{"title":"一种用于冲压金属薄板的气动、人造肌肉式压力机的研制","authors":"A. Kapti, Ilker Atakul","doi":"10.17222/mit.2023.783","DOIUrl":null,"url":null,"abstract":"The present study examines the nonlinear behavior of pneumatic, artificial muscles and investigates their availability for producing pressing forces over the experimentally determined tensile forces. It covers the design and manufacturing studies of a test setup and a pneumatic, artificial-muscle-based press to achieve this goal. The press design consists of a single pneumatic artificial muscle to provide the main pressing force and another two to bring the press back to the neutral position. The proposed approach is considered sufficient for thin sheet-metal punching molds and fills a gap in the spectrum of pressing technologies. A sufficient level of pressing force for thin sheet-metal punching is found to be achievable using a single 40-mm-diameter, pneumatic, artificial muscle. The results show that the press can produce (9.1, 23.1 and 36.9) kN pressing forces at (200, 400 and 600) kPa air pressures, respectively.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEVELOPMENT OF A PNEUMATIC, ARTIFICIAL-MUSCLE- BASED PRESS FOR PUNCHING THIN METAL SHEETS\",\"authors\":\"A. Kapti, Ilker Atakul\",\"doi\":\"10.17222/mit.2023.783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study examines the nonlinear behavior of pneumatic, artificial muscles and investigates their availability for producing pressing forces over the experimentally determined tensile forces. It covers the design and manufacturing studies of a test setup and a pneumatic, artificial-muscle-based press to achieve this goal. The press design consists of a single pneumatic artificial muscle to provide the main pressing force and another two to bring the press back to the neutral position. The proposed approach is considered sufficient for thin sheet-metal punching molds and fills a gap in the spectrum of pressing technologies. A sufficient level of pressing force for thin sheet-metal punching is found to be achievable using a single 40-mm-diameter, pneumatic, artificial muscle. The results show that the press can produce (9.1, 23.1 and 36.9) kN pressing forces at (200, 400 and 600) kPa air pressures, respectively.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.783\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.783","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
DEVELOPMENT OF A PNEUMATIC, ARTIFICIAL-MUSCLE- BASED PRESS FOR PUNCHING THIN METAL SHEETS
The present study examines the nonlinear behavior of pneumatic, artificial muscles and investigates their availability for producing pressing forces over the experimentally determined tensile forces. It covers the design and manufacturing studies of a test setup and a pneumatic, artificial-muscle-based press to achieve this goal. The press design consists of a single pneumatic artificial muscle to provide the main pressing force and another two to bring the press back to the neutral position. The proposed approach is considered sufficient for thin sheet-metal punching molds and fills a gap in the spectrum of pressing technologies. A sufficient level of pressing force for thin sheet-metal punching is found to be achievable using a single 40-mm-diameter, pneumatic, artificial muscle. The results show that the press can produce (9.1, 23.1 and 36.9) kN pressing forces at (200, 400 and 600) kPa air pressures, respectively.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.