Haryanto, N. Nurulita, E. Sundhani, P. Huh, S. Kim
{"title":"聚乙二醇二羧酸酯分子量对交联水凝胶膜抗粘附性能的影响","authors":"Haryanto, N. Nurulita, E. Sundhani, P. Huh, S. Kim","doi":"10.1080/03602559.2017.1381254","DOIUrl":null,"url":null,"abstract":"ABSTRACT Poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) cross-linked hydrogel films were developed as an antiadhesion barrier using an e-beam. The effects of molecular weight of PEGDC on hydrogel properties were investigated. The decrease in molecular weight of PEGDC increased the gel fraction and tissue adhesion, whereas the mechanical strength did not change considerably. On the other hand, the swelling ratio decreased rapidly with decreasing molecular weight of PEGDC. The cytotoxicity of PEGDC (2000 or 3000) was low, whereas that of PEGDC (1000) was higher. In animal studies, all hydrogels showed a better antiadhesive effect compared to the control. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"97 1","pages":"1393 - 1399"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Molecular Weight of Poly(Ethylene Glycol) Dicarboxylate on the Properties of Cross-Linked Hydrogel Film as an Antiadhesion Barrier\",\"authors\":\"Haryanto, N. Nurulita, E. Sundhani, P. Huh, S. Kim\",\"doi\":\"10.1080/03602559.2017.1381254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) cross-linked hydrogel films were developed as an antiadhesion barrier using an e-beam. The effects of molecular weight of PEGDC on hydrogel properties were investigated. The decrease in molecular weight of PEGDC increased the gel fraction and tissue adhesion, whereas the mechanical strength did not change considerably. On the other hand, the swelling ratio decreased rapidly with decreasing molecular weight of PEGDC. The cytotoxicity of PEGDC (2000 or 3000) was low, whereas that of PEGDC (1000) was higher. In animal studies, all hydrogels showed a better antiadhesive effect compared to the control. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20629,\"journal\":{\"name\":\"Polymer-Plastics Technology and Engineering\",\"volume\":\"97 1\",\"pages\":\"1393 - 1399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer-Plastics Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03602559.2017.1381254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1381254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Effect of Molecular Weight of Poly(Ethylene Glycol) Dicarboxylate on the Properties of Cross-Linked Hydrogel Film as an Antiadhesion Barrier
ABSTRACT Poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) cross-linked hydrogel films were developed as an antiadhesion barrier using an e-beam. The effects of molecular weight of PEGDC on hydrogel properties were investigated. The decrease in molecular weight of PEGDC increased the gel fraction and tissue adhesion, whereas the mechanical strength did not change considerably. On the other hand, the swelling ratio decreased rapidly with decreasing molecular weight of PEGDC. The cytotoxicity of PEGDC (2000 or 3000) was low, whereas that of PEGDC (1000) was higher. In animal studies, all hydrogels showed a better antiadhesive effect compared to the control. GRAPHICAL ABSTRACT