粉煤灰稳定膨胀土的胀缩特性

T. Ashok Kumar, T. Thyagaraj, R. Robinson
{"title":"粉煤灰稳定膨胀土的胀缩特性","authors":"T. Ashok Kumar, T. Thyagaraj, R. Robinson","doi":"10.1680/jgrim.21.00024","DOIUrl":null,"url":null,"abstract":"Class C fly ash, a byproduct of thermal power plants, is often preferred for the stabilisation of expansive soils. However, improper optimisation of the stabiliser may lead to the premature failure of treated soils during wet–dry cycles. This  study demonstrates the volume change behaviour of fly ash-stabilised expansive soils subjected to wet–dry cycles. Furthermore, the effect of class C fly ash and lime–class C fly ash on the physical and engineering properties is also studied. The experimental results showed that addition of 20% fly ash to the expansive soil reduced the swell potential to 0% from an untreated swell value of 10.5%. However, when it was subjected to five wet–dry cycles, the initial cementitious effect of the fly ash on controlling the swell was partially lost, and therefore the volumetric deformation of the stabilised expansive soil increased from 0 to 14.5%. Furthermore, among the different additive combinations used for the treatment of expansive soils, it was observed that the combination of 4% lime and 20% fly ash resulted in the volumetric deformation of only 2.05% even after the fifth wet–dry cycle. Besides, the percentage of desiccation cracks has also reduced significantly from 29 to 0.5%.","PeriodicalId":51705,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Ground Improvement","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Swell–shrink behaviour of fly ash-stabilised expansive soils\",\"authors\":\"T. Ashok Kumar, T. Thyagaraj, R. Robinson\",\"doi\":\"10.1680/jgrim.21.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class C fly ash, a byproduct of thermal power plants, is often preferred for the stabilisation of expansive soils. However, improper optimisation of the stabiliser may lead to the premature failure of treated soils during wet–dry cycles. This  study demonstrates the volume change behaviour of fly ash-stabilised expansive soils subjected to wet–dry cycles. Furthermore, the effect of class C fly ash and lime–class C fly ash on the physical and engineering properties is also studied. The experimental results showed that addition of 20% fly ash to the expansive soil reduced the swell potential to 0% from an untreated swell value of 10.5%. However, when it was subjected to five wet–dry cycles, the initial cementitious effect of the fly ash on controlling the swell was partially lost, and therefore the volumetric deformation of the stabilised expansive soil increased from 0 to 14.5%. Furthermore, among the different additive combinations used for the treatment of expansive soils, it was observed that the combination of 4% lime and 20% fly ash resulted in the volumetric deformation of only 2.05% even after the fifth wet–dry cycle. Besides, the percentage of desiccation cracks has also reduced significantly from 29 to 0.5%.\",\"PeriodicalId\":51705,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Ground Improvement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Ground Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jgrim.21.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Ground Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgrim.21.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 3

摘要

C类粉煤灰是热电厂的副产品,通常被首选用于稳定膨胀土。然而,稳定剂的不当优化可能导致处理过的土壤在干湿循环中过早失效。研究了粉煤灰稳定膨胀土在干湿循环作用下的体积变化特性。此外,还研究了C级粉煤灰和石灰C级粉煤灰对粉煤灰物理性能和工程性能的影响。试验结果表明,在膨胀土中添加20%粉煤灰后,膨胀势由未处理的10.5%降至0%。然而,当经历5次干湿循环后,粉煤灰控制膨胀的初始胶凝作用部分丧失,稳定膨胀土的体积变形从0增加到14.5%。此外,在不同的处理膨胀土的添加剂组合中,4%石灰和20%粉煤灰的组合即使在第5次干湿循环后也只产生了2.05%的体积变形。此外,干燥裂缝的比例也从29%显著降低到0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Swell–shrink behaviour of fly ash-stabilised expansive soils
Class C fly ash, a byproduct of thermal power plants, is often preferred for the stabilisation of expansive soils. However, improper optimisation of the stabiliser may lead to the premature failure of treated soils during wet–dry cycles. This  study demonstrates the volume change behaviour of fly ash-stabilised expansive soils subjected to wet–dry cycles. Furthermore, the effect of class C fly ash and lime–class C fly ash on the physical and engineering properties is also studied. The experimental results showed that addition of 20% fly ash to the expansive soil reduced the swell potential to 0% from an untreated swell value of 10.5%. However, when it was subjected to five wet–dry cycles, the initial cementitious effect of the fly ash on controlling the swell was partially lost, and therefore the volumetric deformation of the stabilised expansive soil increased from 0 to 14.5%. Furthermore, among the different additive combinations used for the treatment of expansive soils, it was observed that the combination of 4% lime and 20% fly ash resulted in the volumetric deformation of only 2.05% even after the fifth wet–dry cycle. Besides, the percentage of desiccation cracks has also reduced significantly from 29 to 0.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
8.30%
发文量
54
期刊介绍: Ground Improvement provides a fast-track vehicle for the dissemination of news in technological developments, feasibility studies and innovative engineering applications for all aspects of ground improvement, ground reinforcement and grouting. The journal publishes high-quality, practical papers relevant to engineers, specialist contractors and academics involved in the development, design, construction, monitoring and quality control aspects of ground improvement. It covers a wide range of civil and environmental engineering applications, including analytical advances, performance evaluations, pilot and model studies, instrumented case-histories and innovative applications of existing technology.
期刊最新文献
Assessment of alkali-induced heave in soil and its stabilisation using slag Investigation of bottom ash as a partial replacement to conventional subbase soils Effect of surcharge loads during curing of lime stabilised Cochin marine clay Effect of smear zone on the consolidation and strength characteristics of soil under radial drainage Effect of tyre crumbs on the stability of sand under constant shear drained stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1