{"title":"探索使用经典计算机视觉和深度学习的人孔自动目标检测方法","authors":"S. Rao, Nitya Mitnala","doi":"10.22630/mgv.2023.32.1.2","DOIUrl":null,"url":null,"abstract":"Open, broken, and improperly closed manholes can pose problems for autonomous vehicles and thus need to be included in obstacle avoidance and lane-changing algorithms. In this work, we propose and compare multiple approaches for manhole localization and classification like classical computer vision, convolutional neural networks like YOLOv3 and YOLOv3-Tiny, and vision transformers like YOLOS and ViT. These are analyzed for speed, computational complexity, and accuracy in order to determine the model that can be used with autonomous vehicles. In addition, we propose a size detection pipeline using classical computer vision to determine the size of the hole in an improperly closed manhole with respect to the manhole itself. The evaluation of the data showed that convolutional neural networks are currently better for this task, but vision transformers seem promising.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring automated object detection methods for manholes using classical computer vision and deep learning\",\"authors\":\"S. Rao, Nitya Mitnala\",\"doi\":\"10.22630/mgv.2023.32.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open, broken, and improperly closed manholes can pose problems for autonomous vehicles and thus need to be included in obstacle avoidance and lane-changing algorithms. In this work, we propose and compare multiple approaches for manhole localization and classification like classical computer vision, convolutional neural networks like YOLOv3 and YOLOv3-Tiny, and vision transformers like YOLOS and ViT. These are analyzed for speed, computational complexity, and accuracy in order to determine the model that can be used with autonomous vehicles. In addition, we propose a size detection pipeline using classical computer vision to determine the size of the hole in an improperly closed manhole with respect to the manhole itself. The evaluation of the data showed that convolutional neural networks are currently better for this task, but vision transformers seem promising.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2023.32.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2023.32.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring automated object detection methods for manholes using classical computer vision and deep learning
Open, broken, and improperly closed manholes can pose problems for autonomous vehicles and thus need to be included in obstacle avoidance and lane-changing algorithms. In this work, we propose and compare multiple approaches for manhole localization and classification like classical computer vision, convolutional neural networks like YOLOv3 and YOLOv3-Tiny, and vision transformers like YOLOS and ViT. These are analyzed for speed, computational complexity, and accuracy in order to determine the model that can be used with autonomous vehicles. In addition, we propose a size detection pipeline using classical computer vision to determine the size of the hole in an improperly closed manhole with respect to the manhole itself. The evaluation of the data showed that convolutional neural networks are currently better for this task, but vision transformers seem promising.
期刊介绍:
Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling