{"title":"乳腺x线肿块分类中深度学习特征与纹理特征的比较","authors":"Guobin Li, Cory Thomas, R. Zwiggelaar","doi":"10.1117/12.2625774","DOIUrl":null,"url":null,"abstract":"As deep learning models are increasingly applied in medical diagnostic assistance systems, this raises questions about ones ability to understand and interpret its decision-making process. In this work, using breast lesions from the Optimam Mammography Image Database (OMI-DB), we have explored whether deep learned features have similar predictive information as classical texture features. We trained a deep learning model for mass lesion classification and used Gradient-weighted Class Activation Mapping to produce a representation of deep learned features. Additional, classical texture features (e.g. energy) were extracted. Subsequently, we used the earth mover’s distance to investigate similarities between deep learned and texture features. The comparison identified that texture features such as mean, entropy and auto-correlation showed a strong similarity with the deep learned features and provided an indication of what the deep learning models might have used as information for its classification.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"2013 1","pages":"122860N - 122860N-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of deep learned and texture features in mammographic mass classification\",\"authors\":\"Guobin Li, Cory Thomas, R. Zwiggelaar\",\"doi\":\"10.1117/12.2625774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As deep learning models are increasingly applied in medical diagnostic assistance systems, this raises questions about ones ability to understand and interpret its decision-making process. In this work, using breast lesions from the Optimam Mammography Image Database (OMI-DB), we have explored whether deep learned features have similar predictive information as classical texture features. We trained a deep learning model for mass lesion classification and used Gradient-weighted Class Activation Mapping to produce a representation of deep learned features. Additional, classical texture features (e.g. energy) were extracted. Subsequently, we used the earth mover’s distance to investigate similarities between deep learned and texture features. The comparison identified that texture features such as mean, entropy and auto-correlation showed a strong similarity with the deep learned features and provided an indication of what the deep learning models might have used as information for its classification.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"2013 1\",\"pages\":\"122860N - 122860N-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习模型越来越多地应用于医疗诊断辅助系统,这就提出了人们理解和解释其决策过程的能力的问题。在这项工作中,我们利用Optimam乳房造影图像数据库(OMI-DB)中的乳腺病变,探讨了深度学习特征是否具有与经典纹理特征相似的预测信息。我们训练了一个用于肿块病变分类的深度学习模型,并使用梯度加权类激活映射来生成深度学习特征的表示。此外,提取经典纹理特征(如能量)。随后,我们使用推土机的距离来研究深度学习和纹理特征之间的相似性。对比发现,纹理特征(如均值、熵和自相关)与深度学习的特征具有很强的相似性,并提供了深度学习模型可能使用的分类信息的指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of deep learned and texture features in mammographic mass classification
As deep learning models are increasingly applied in medical diagnostic assistance systems, this raises questions about ones ability to understand and interpret its decision-making process. In this work, using breast lesions from the Optimam Mammography Image Database (OMI-DB), we have explored whether deep learned features have similar predictive information as classical texture features. We trained a deep learning model for mass lesion classification and used Gradient-weighted Class Activation Mapping to produce a representation of deep learned features. Additional, classical texture features (e.g. energy) were extracted. Subsequently, we used the earth mover’s distance to investigate similarities between deep learned and texture features. The comparison identified that texture features such as mean, entropy and auto-correlation showed a strong similarity with the deep learned features and provided an indication of what the deep learning models might have used as information for its classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1