{"title":"4h型碳化硅(SiC)上生长的热氮和干栅氧化物的电流传导机理","authors":"Li Liu, Yin-Tang Yang","doi":"10.1515/jaots-2016-0177","DOIUrl":null,"url":null,"abstract":"Abstract Current conduction mechanisms of SiC metal-oxide-semiconductor (MOS) capacitors on n-type 4H-SiC with or without NO annealing have been investigated in this work. It has been revealed that Fowler-Nordheim (FN) tunneling is the dominating current conduction mechanism in high electrical fields, with barrier height of 2.67 and 2.54 eV respectively for samples with NO and without NO annealing. A higher barrier height for NO-annealed sample indicates the effect of N element on the SiC/SiO2 interface quality. In the intermediate oxide field, instead of trap-assisted tunneling (TAT), Poole-Frenkel (PF) emission play the key role in this region. A combination of C-V characteristics also show us the advantages of NO annealing on the SiC/SiO2 characteristics.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Current conduction mechanisms in thermal nitride and dry gate oxide grown on 4H-silicon carbide (SiC)\",\"authors\":\"Li Liu, Yin-Tang Yang\",\"doi\":\"10.1515/jaots-2016-0177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Current conduction mechanisms of SiC metal-oxide-semiconductor (MOS) capacitors on n-type 4H-SiC with or without NO annealing have been investigated in this work. It has been revealed that Fowler-Nordheim (FN) tunneling is the dominating current conduction mechanism in high electrical fields, with barrier height of 2.67 and 2.54 eV respectively for samples with NO and without NO annealing. A higher barrier height for NO-annealed sample indicates the effect of N element on the SiC/SiO2 interface quality. In the intermediate oxide field, instead of trap-assisted tunneling (TAT), Poole-Frenkel (PF) emission play the key role in this region. A combination of C-V characteristics also show us the advantages of NO annealing on the SiC/SiO2 characteristics.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Current conduction mechanisms in thermal nitride and dry gate oxide grown on 4H-silicon carbide (SiC)
Abstract Current conduction mechanisms of SiC metal-oxide-semiconductor (MOS) capacitors on n-type 4H-SiC with or without NO annealing have been investigated in this work. It has been revealed that Fowler-Nordheim (FN) tunneling is the dominating current conduction mechanism in high electrical fields, with barrier height of 2.67 and 2.54 eV respectively for samples with NO and without NO annealing. A higher barrier height for NO-annealed sample indicates the effect of N element on the SiC/SiO2 interface quality. In the intermediate oxide field, instead of trap-assisted tunneling (TAT), Poole-Frenkel (PF) emission play the key role in this region. A combination of C-V characteristics also show us the advantages of NO annealing on the SiC/SiO2 characteristics.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs