采用常规和随机漂移粒子群优化算法合成平顶方向图天线阵列

Bitan Misra, Arindam Deb
{"title":"采用常规和随机漂移粒子群优化算法合成平顶方向图天线阵列","authors":"Bitan Misra, Arindam Deb","doi":"10.1109/EDCT.2018.8405055","DOIUrl":null,"url":null,"abstract":"Synthesis of antenna arrays with flat-top patterns is performed using conventional and random drift particle swarm optimization techniques. Optimization objectives are minimization of pattern errors in the specified beam width between first nulls, minimization of ripples within the main beam and maximum side lobe level outside the main beam. Two case studies have been performed, one without any restriction on the range of excitation current amplitude and phase, the other with restricted current amplitude and phase variation. In the first case, random drift particle swarm optimization showed a faster convergence to the optimal solution. Maximum side lobe level corresponding to antenna array parameters obtained from random drift particle swarm optimization is -38.78 dB. In the second case, conventional particle swam optimization performed better compared to the other optimization algorithm. The pattern for array parameters obtained with the conventional algorithm has a maximum side lobe level of -19 dB.","PeriodicalId":6507,"journal":{"name":"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)","volume":"191 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Synthesis of antenna arrays with flat-top pattern using conventional and random drift particle swarm optimization algorithms\",\"authors\":\"Bitan Misra, Arindam Deb\",\"doi\":\"10.1109/EDCT.2018.8405055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis of antenna arrays with flat-top patterns is performed using conventional and random drift particle swarm optimization techniques. Optimization objectives are minimization of pattern errors in the specified beam width between first nulls, minimization of ripples within the main beam and maximum side lobe level outside the main beam. Two case studies have been performed, one without any restriction on the range of excitation current amplitude and phase, the other with restricted current amplitude and phase variation. In the first case, random drift particle swarm optimization showed a faster convergence to the optimal solution. Maximum side lobe level corresponding to antenna array parameters obtained from random drift particle swarm optimization is -38.78 dB. In the second case, conventional particle swam optimization performed better compared to the other optimization algorithm. The pattern for array parameters obtained with the conventional algorithm has a maximum side lobe level of -19 dB.\",\"PeriodicalId\":6507,\"journal\":{\"name\":\"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)\",\"volume\":\"191 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDCT.2018.8405055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCT.2018.8405055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用常规粒子群优化和随机漂移粒子群优化技术对平顶天线阵进行了综合。优化目标是在规定的波束宽度内,使第一波零之间的模式误差最小化,使主波束内的波纹最小化,并使主波束外的旁瓣电平最大化。进行了两个实例研究,一个不限制励磁电流幅值和相位的范围,另一个限制励磁电流幅值和相位的变化。在第一种情况下,随机漂移粒子群算法收敛速度更快。随机漂移粒子群优化得到的天线阵列参数对应的最大旁瓣电平为-38.78 dB。在第二种情况下,与其他优化算法相比,常规粒子游优化算法的性能更好。用常规算法得到的阵列参数方向图最大旁瓣电平为- 19db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of antenna arrays with flat-top pattern using conventional and random drift particle swarm optimization algorithms
Synthesis of antenna arrays with flat-top patterns is performed using conventional and random drift particle swarm optimization techniques. Optimization objectives are minimization of pattern errors in the specified beam width between first nulls, minimization of ripples within the main beam and maximum side lobe level outside the main beam. Two case studies have been performed, one without any restriction on the range of excitation current amplitude and phase, the other with restricted current amplitude and phase variation. In the first case, random drift particle swarm optimization showed a faster convergence to the optimal solution. Maximum side lobe level corresponding to antenna array parameters obtained from random drift particle swarm optimization is -38.78 dB. In the second case, conventional particle swam optimization performed better compared to the other optimization algorithm. The pattern for array parameters obtained with the conventional algorithm has a maximum side lobe level of -19 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new improved algorithm for optimal sizing of battery-supercapacitor based hybrid energy storage systems A smart street-light intensity optimizer Controlling of mobile car robots using IR sensors and a tripple axis magnetometer Bandpass filters using multilayered microstrip structures Techno economic feasibility analysis of hybrid energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1