干纤维缠绕路径计算、技术与机遇综述

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2018-07-03 DOI:10.1080/20550340.2018.1500099
T. Sofi, Stefan Neunkirchen, R. Schledjewski
{"title":"干纤维缠绕路径计算、技术与机遇综述","authors":"T. Sofi, Stefan Neunkirchen, R. Schledjewski","doi":"10.1080/20550340.2018.1500099","DOIUrl":null,"url":null,"abstract":"Abstract Filament winding is a well-established process to manufacture composite parts. With the advancement of automation and process control technologies, the winding of dry fibers to manufacture a preform for liquid composite molding (LCM) processes is feasible. This study presents an overview of dry fiber winding and explains the most important process aspects. It addresses the application of differential geometry to the winding technique. The formulation of geodesic and non-geodesic equations and their solution is discussed. Besides, non-analytical methods to generate winding trajectories are introduced. The influence of the friction coefficient on process-related parameters is covered. Considering technology trends the study gives an overview of developments in winding systems and equipment. Novel research areas can be identified in the development of new path generation methods, considering detailed friction influences. Fiber depositing and guidance systems must also be adapted. Alternations of the process parameters and their influence on subsequent impregnation processes must be investigated.","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Path calculation, technology and opportunities in dry fiber winding: a review\",\"authors\":\"T. Sofi, Stefan Neunkirchen, R. Schledjewski\",\"doi\":\"10.1080/20550340.2018.1500099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Filament winding is a well-established process to manufacture composite parts. With the advancement of automation and process control technologies, the winding of dry fibers to manufacture a preform for liquid composite molding (LCM) processes is feasible. This study presents an overview of dry fiber winding and explains the most important process aspects. It addresses the application of differential geometry to the winding technique. The formulation of geodesic and non-geodesic equations and their solution is discussed. Besides, non-analytical methods to generate winding trajectories are introduced. The influence of the friction coefficient on process-related parameters is covered. Considering technology trends the study gives an overview of developments in winding systems and equipment. Novel research areas can be identified in the development of new path generation methods, considering detailed friction influences. Fiber depositing and guidance systems must also be adapted. Alternations of the process parameters and their influence on subsequent impregnation processes must be investigated.\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2018.1500099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2018.1500099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 25

摘要

摘要长丝缠绕是一种成熟的复合材料零件制造工艺。随着自动化和过程控制技术的进步,用干纤维缠绕制造液态复合成型(LCM)预制体是可行的。本研究介绍了干纤维缠绕的概况,并解释了最重要的工艺方面。讨论了微分几何在绕线技术中的应用。讨论了测地线方程和非测地线方程的公式及其解。此外,还介绍了生成缠绕轨迹的非解析方法。讨论了摩擦系数对工艺参数的影响。考虑到技术趋势,该研究概述了绕组系统和设备的发展。新的研究领域可以在新的路径生成方法的发展中确定,考虑到详细的摩擦影响。纤维沉积和制导系统也必须加以调整。必须研究工艺参数的变化及其对后续浸渍工艺的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path calculation, technology and opportunities in dry fiber winding: a review
Abstract Filament winding is a well-established process to manufacture composite parts. With the advancement of automation and process control technologies, the winding of dry fibers to manufacture a preform for liquid composite molding (LCM) processes is feasible. This study presents an overview of dry fiber winding and explains the most important process aspects. It addresses the application of differential geometry to the winding technique. The formulation of geodesic and non-geodesic equations and their solution is discussed. Besides, non-analytical methods to generate winding trajectories are introduced. The influence of the friction coefficient on process-related parameters is covered. Considering technology trends the study gives an overview of developments in winding systems and equipment. Novel research areas can be identified in the development of new path generation methods, considering detailed friction influences. Fiber depositing and guidance systems must also be adapted. Alternations of the process parameters and their influence on subsequent impregnation processes must be investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1