十二烷先导燃料引发预混合氨双燃料燃烧的光学研究和热力学分析

Silas Wüthrich, Patrick Cartier, Pascal Süess, Bruno Schneider, Peter Obrecht, Kai Herrmann
{"title":"十二烷先导燃料引发预混合氨双燃料燃烧的光学研究和热力学分析","authors":"Silas Wüthrich,&nbsp;Patrick Cartier,&nbsp;Pascal Süess,&nbsp;Bruno Schneider,&nbsp;Peter Obrecht,&nbsp;Kai Herrmann","doi":"10.1016/j.jfueco.2022.100074","DOIUrl":null,"url":null,"abstract":"<div><p>In view of reducing greenhouse gas emissions the transition from fossils fuels to sustainable energy carriers is a prerequisite to keep global warming within tolerable limits. Since IC engines will continue to play a role in global energy strategies during a transitional phase, especially for large engine applications difficult to electrify, the use of ammonia as substitute fuel may be an approach for decarbonization. However, its utilization needs research since ignition concepts and combustion properties still pose considerable challenges in view of reliable and efficient operation. A new \"optical engine\" test facility (\"Flex-OeCoS\") has been successfully adapted enabling dodecane pilot fuel ignited premixed ammonia dual-fuel combustion investigations. It features IC engine relevant operation conditions such as pressures, temperatures, and flow (turbulence) conditions as well as adjustable mixture charge composition and pilot fuel injection settings. In parallel, thermodynamic heat release analysis in terms of ignition and combustion characteristics was performed. Simultaneously applied high-speed Schlieren/OH* chemiluminescence measurements supported the examination of the combustion process. Initially premixed ammonia dual fuel combustion has been compared to a representative methane combustion process in terms of different gas properties (lower heating value, air-fuel ratio) which illustrates its lower reactivity affecting heat release and flame propagation. Moreover, ignition delay, combustion transition, and turbulent flame propagation as well as heat release characteristics have been investigated for premixed ammonia dual-fuel combustion within variation of air-fuel equivalence ratio, start of pilot fuel injection, and pressure/temperature operation conditions. The results illustrate strong dependency on air-fuel equivalence ratio (energy content) and temperature conditions in terms of ignition delay, dual-fuel combustion transition, and corresponding heat release. The optical investigations confirm the thermodynamic analysis and promote assessment of pilot fuel evaporation, ignition, combustion transition, and flame propagation. Conclusions give extended insight into the thermo-chemical processes of ammonia pilot fuel ignited dual-fuel combustion. The acquired data may also support further development of numerical CRFD methods.</p></div>","PeriodicalId":100556,"journal":{"name":"Fuel Communications","volume":"12 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666052022000243/pdfft?md5=d7d893d223832ab5e307570f2874aeb8&pid=1-s2.0-S2666052022000243-main.pdf","citationCount":"10","resultStr":"{\"title\":\"Optical investigation and thermodynamic analysis of premixed ammonia dual-fuel combustion initiated by dodecane pilot fuel\",\"authors\":\"Silas Wüthrich,&nbsp;Patrick Cartier,&nbsp;Pascal Süess,&nbsp;Bruno Schneider,&nbsp;Peter Obrecht,&nbsp;Kai Herrmann\",\"doi\":\"10.1016/j.jfueco.2022.100074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In view of reducing greenhouse gas emissions the transition from fossils fuels to sustainable energy carriers is a prerequisite to keep global warming within tolerable limits. Since IC engines will continue to play a role in global energy strategies during a transitional phase, especially for large engine applications difficult to electrify, the use of ammonia as substitute fuel may be an approach for decarbonization. However, its utilization needs research since ignition concepts and combustion properties still pose considerable challenges in view of reliable and efficient operation. A new \\\"optical engine\\\" test facility (\\\"Flex-OeCoS\\\") has been successfully adapted enabling dodecane pilot fuel ignited premixed ammonia dual-fuel combustion investigations. It features IC engine relevant operation conditions such as pressures, temperatures, and flow (turbulence) conditions as well as adjustable mixture charge composition and pilot fuel injection settings. In parallel, thermodynamic heat release analysis in terms of ignition and combustion characteristics was performed. Simultaneously applied high-speed Schlieren/OH* chemiluminescence measurements supported the examination of the combustion process. Initially premixed ammonia dual fuel combustion has been compared to a representative methane combustion process in terms of different gas properties (lower heating value, air-fuel ratio) which illustrates its lower reactivity affecting heat release and flame propagation. Moreover, ignition delay, combustion transition, and turbulent flame propagation as well as heat release characteristics have been investigated for premixed ammonia dual-fuel combustion within variation of air-fuel equivalence ratio, start of pilot fuel injection, and pressure/temperature operation conditions. The results illustrate strong dependency on air-fuel equivalence ratio (energy content) and temperature conditions in terms of ignition delay, dual-fuel combustion transition, and corresponding heat release. The optical investigations confirm the thermodynamic analysis and promote assessment of pilot fuel evaporation, ignition, combustion transition, and flame propagation. Conclusions give extended insight into the thermo-chemical processes of ammonia pilot fuel ignited dual-fuel combustion. The acquired data may also support further development of numerical CRFD methods.</p></div>\",\"PeriodicalId\":100556,\"journal\":{\"name\":\"Fuel Communications\",\"volume\":\"12 \",\"pages\":\"Article 100074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666052022000243/pdfft?md5=d7d893d223832ab5e307570f2874aeb8&pid=1-s2.0-S2666052022000243-main.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666052022000243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666052022000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从减少温室气体排放的角度来看,从化石燃料向可持续能源载体的过渡是将全球变暖控制在可容忍范围内的先决条件。由于IC发动机在过渡阶段将继续在全球能源战略中发挥作用,特别是对于难以电气化的大型发动机应用,使用氨作为替代燃料可能是脱碳的一种方法。然而,从可靠高效运行的角度来看,其点火概念和燃烧特性仍存在相当大的挑战,因此其利用还有待研究。一个新的“光学发动机”测试设备(“Flex-OeCoS”)已经成功地进行了十二烷先导燃料点燃的预混氨双燃料燃烧研究。它具有IC发动机相关的操作条件,如压力、温度、流量(湍流)条件,以及可调的混合气成分和先导燃油喷射设置。同时,根据点火和燃烧特性进行了热力学放热分析。同时应用高速纹影/OH*化学发光测量支持燃烧过程的检查。首先将预混氨双燃料燃烧与具有代表性的甲烷燃烧过程进行了比较,对比其不同的气体性质(较低的热值、空燃比),说明其较低的反应性影响热释放和火焰传播。研究了不同空燃当量比、先导喷油启动和压力/温度工况下,预混氨双燃料燃烧的点火延迟、燃烧过渡、湍流火焰传播和放热特性。结果表明,在点火延迟、双燃料燃烧转变和相应的热释放方面,空气-燃料当量比(能量含量)和温度条件具有很强的依赖性。光学研究证实了热力学分析,促进了中试燃料蒸发、点火、燃烧转变和火焰传播的评估。结论为氨先导燃料点燃双燃料燃烧的热化学过程提供了深入的见解。所获得的数据也可以支持数值CRFD方法的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical investigation and thermodynamic analysis of premixed ammonia dual-fuel combustion initiated by dodecane pilot fuel

In view of reducing greenhouse gas emissions the transition from fossils fuels to sustainable energy carriers is a prerequisite to keep global warming within tolerable limits. Since IC engines will continue to play a role in global energy strategies during a transitional phase, especially for large engine applications difficult to electrify, the use of ammonia as substitute fuel may be an approach for decarbonization. However, its utilization needs research since ignition concepts and combustion properties still pose considerable challenges in view of reliable and efficient operation. A new "optical engine" test facility ("Flex-OeCoS") has been successfully adapted enabling dodecane pilot fuel ignited premixed ammonia dual-fuel combustion investigations. It features IC engine relevant operation conditions such as pressures, temperatures, and flow (turbulence) conditions as well as adjustable mixture charge composition and pilot fuel injection settings. In parallel, thermodynamic heat release analysis in terms of ignition and combustion characteristics was performed. Simultaneously applied high-speed Schlieren/OH* chemiluminescence measurements supported the examination of the combustion process. Initially premixed ammonia dual fuel combustion has been compared to a representative methane combustion process in terms of different gas properties (lower heating value, air-fuel ratio) which illustrates its lower reactivity affecting heat release and flame propagation. Moreover, ignition delay, combustion transition, and turbulent flame propagation as well as heat release characteristics have been investigated for premixed ammonia dual-fuel combustion within variation of air-fuel equivalence ratio, start of pilot fuel injection, and pressure/temperature operation conditions. The results illustrate strong dependency on air-fuel equivalence ratio (energy content) and temperature conditions in terms of ignition delay, dual-fuel combustion transition, and corresponding heat release. The optical investigations confirm the thermodynamic analysis and promote assessment of pilot fuel evaporation, ignition, combustion transition, and flame propagation. Conclusions give extended insight into the thermo-chemical processes of ammonia pilot fuel ignited dual-fuel combustion. The acquired data may also support further development of numerical CRFD methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of difference in heating sources on ammonia reactivity: Possibility for photolysis-assisted ammonia combustion Investigations on conical lean turbulent premixed hydrogenated natural gas flames Diversity in the acceptance of sustainable aviation fuels: Uncovering varying motivational patterns Flame stabilization and pollutant emissions of turbulent ammonia and blended ammonia flames: A review of the recent experimental and numerical advances Turbulent partially cracked ammonia/air premixed spherical flames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1