基于时空光线积分的主动三维运动可视化

Fumihiko Sakaue, J. Sato
{"title":"基于时空光线积分的主动三维运动可视化","authors":"Fumihiko Sakaue, J. Sato","doi":"10.1109/CVPR42600.2020.00205","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method of visualizing 3D motion with zero latency. This method achieves motion visualization by projecting special high-frequency light patterns on moving objects without using any feedback mechanisms. For this objective, we focus on the time integration of light rays in the sensing system of observers. It is known that the visual system of human observers integrates light rays in a certain period. Similarly, the image sensor in a camera integrates light rays during the exposure time. Thus, our method embeds multiple images into a time-varying light field, such that the observer of the time-varying light field observes completely different images according to the dynamic motion of the scene. Based on this concept, we propose a method of generating special high-frequency patterns of projector lights. After projection onto target objects with projectors, the image observed on the target changes automatically depending on the motion of the objects and without any scene sensing and data analysis. In other words, we achieve motion visualization without the time delay incurred during sensing and computing.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"66 1","pages":"1977-1985"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Active 3D Motion Visualization Based on Spatiotemporal Light-Ray Integration\",\"authors\":\"Fumihiko Sakaue, J. Sato\",\"doi\":\"10.1109/CVPR42600.2020.00205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method of visualizing 3D motion with zero latency. This method achieves motion visualization by projecting special high-frequency light patterns on moving objects without using any feedback mechanisms. For this objective, we focus on the time integration of light rays in the sensing system of observers. It is known that the visual system of human observers integrates light rays in a certain period. Similarly, the image sensor in a camera integrates light rays during the exposure time. Thus, our method embeds multiple images into a time-varying light field, such that the observer of the time-varying light field observes completely different images according to the dynamic motion of the scene. Based on this concept, we propose a method of generating special high-frequency patterns of projector lights. After projection onto target objects with projectors, the image observed on the target changes automatically depending on the motion of the objects and without any scene sensing and data analysis. In other words, we achieve motion visualization without the time delay incurred during sensing and computing.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"66 1\",\"pages\":\"1977-1985\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR42600.2020.00205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.00205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种零延迟的三维运动可视化方法。该方法在不使用任何反馈机制的情况下,通过在运动物体上投射特殊的高频光模式来实现运动可视化。为此,我们重点研究了观测者感知系统中光线的时间积分。众所周知,人类观察者的视觉系统在一定的时间内整合光线。类似地,照相机中的图像传感器在曝光时也会将光线集成在一起。因此,我们的方法将多幅图像嵌入到一个时变光场中,使得时变光场的观察者根据场景的动态运动观察到完全不同的图像。基于这个概念,我们提出了一种产生特殊高频模式的投影灯的方法。用投影仪投影到目标物体上后,在目标上观察到的图像会随着物体的运动而自动变化,不需要任何场景感知和数据分析。换句话说,我们实现了运动可视化,而没有在传感和计算过程中产生的时间延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active 3D Motion Visualization Based on Spatiotemporal Light-Ray Integration
In this paper, we propose a method of visualizing 3D motion with zero latency. This method achieves motion visualization by projecting special high-frequency light patterns on moving objects without using any feedback mechanisms. For this objective, we focus on the time integration of light rays in the sensing system of observers. It is known that the visual system of human observers integrates light rays in a certain period. Similarly, the image sensor in a camera integrates light rays during the exposure time. Thus, our method embeds multiple images into a time-varying light field, such that the observer of the time-varying light field observes completely different images according to the dynamic motion of the scene. Based on this concept, we propose a method of generating special high-frequency patterns of projector lights. After projection onto target objects with projectors, the image observed on the target changes automatically depending on the motion of the objects and without any scene sensing and data analysis. In other words, we achieve motion visualization without the time delay incurred during sensing and computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1