{"title":"论反可达性游戏的复杂性","authors":"J. Reichert","doi":"10.3233/FI-2016-1320","DOIUrl":null,"url":null,"abstract":"Counter reachability games are played by two players on a graph with labelled edges. Each move consists in picking an edge from the current location and adding its label to a counter vector. The objective is to reach a given counter value in a given location. We distinguish three semantics for counter reachability games, according to what happens when a counter value would become negative: the edge is either disabled, or enabled but the counter value becomes zero, or enabled. We consider the problem of deciding the winner in counter reachability games and show that, in most cases, it has the same complexity under all semantics. Surprisingly, under one semantics, the complexity in dimension one depends on whether the objective value is zero or any other integer.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2013-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On The Complexity of Counter Reachability Games\",\"authors\":\"J. Reichert\",\"doi\":\"10.3233/FI-2016-1320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counter reachability games are played by two players on a graph with labelled edges. Each move consists in picking an edge from the current location and adding its label to a counter vector. The objective is to reach a given counter value in a given location. We distinguish three semantics for counter reachability games, according to what happens when a counter value would become negative: the edge is either disabled, or enabled but the counter value becomes zero, or enabled. We consider the problem of deciding the winner in counter reachability games and show that, in most cases, it has the same complexity under all semantics. Surprisingly, under one semantics, the complexity in dimension one depends on whether the objective value is zero or any other integer.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2013-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2016-1320\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2016-1320","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Counter reachability games are played by two players on a graph with labelled edges. Each move consists in picking an edge from the current location and adding its label to a counter vector. The objective is to reach a given counter value in a given location. We distinguish three semantics for counter reachability games, according to what happens when a counter value would become negative: the edge is either disabled, or enabled but the counter value becomes zero, or enabled. We consider the problem of deciding the winner in counter reachability games and show that, in most cases, it has the same complexity under all semantics. Surprisingly, under one semantics, the complexity in dimension one depends on whether the objective value is zero or any other integer.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.