{"title":"公共自行车共享系统的众包动态重新定位策略","authors":"I-Lin Wang, Chen-Tai Hou","doi":"10.3934/naco.2021049","DOIUrl":null,"url":null,"abstract":"Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"21 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A crowdsourced dynamic repositioning strategy for public bike sharing systems\",\"authors\":\"I-Lin Wang, Chen-Tai Hou\",\"doi\":\"10.3934/naco.2021049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A crowdsourced dynamic repositioning strategy for public bike sharing systems
Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.