基于PCA和ICA的探地雷达杂波降噪比较

B. Karlsen, Jan Larsen, Helge B. D. Sørensen, K. Jakobsen
{"title":"基于PCA和ICA的探地雷达杂波降噪比较","authors":"B. Karlsen, Jan Larsen, Helge B. D. Sørensen, K. Jakobsen","doi":"10.1109/SSP.2001.955243","DOIUrl":null,"url":null,"abstract":"This paper presents statistical signal processing approaches for clutter reduction in stepped-frequency ground penetrating radar (SF-GPR) data. In particular, we suggest clutter/signal separation techniques based on principal and independent component analysis (PCA/ICA). The approaches are successfully evaluated and compared on a real SF-GPR time-series. Field-test data are acquired using a monostatic S-band rectangular waveguide antenna.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"33 1","pages":"146-149"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection\",\"authors\":\"B. Karlsen, Jan Larsen, Helge B. D. Sørensen, K. Jakobsen\",\"doi\":\"10.1109/SSP.2001.955243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents statistical signal processing approaches for clutter reduction in stepped-frequency ground penetrating radar (SF-GPR) data. In particular, we suggest clutter/signal separation techniques based on principal and independent component analysis (PCA/ICA). The approaches are successfully evaluated and compared on a real SF-GPR time-series. Field-test data are acquired using a monostatic S-band rectangular waveguide antenna.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":\"33 1\",\"pages\":\"146-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

本文提出了一种统计信号处理方法,用于对步进频率探地雷达(SF-GPR)数据进行杂波抑制。特别是,我们建议基于主成分和独立成分分析(PCA/ICA)的杂波/信号分离技术。在一个真实的SF-GPR时间序列上成功地对这些方法进行了评估和比较。现场测试数据采集采用单稳态s波段矩形波导天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection
This paper presents statistical signal processing approaches for clutter reduction in stepped-frequency ground penetrating radar (SF-GPR) data. In particular, we suggest clutter/signal separation techniques based on principal and independent component analysis (PCA/ICA). The approaches are successfully evaluated and compared on a real SF-GPR time-series. Field-test data are acquired using a monostatic S-band rectangular waveguide antenna.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
期刊最新文献
A 4/sup N/-QAM adaptive decision device to mitigate I/Q imbalance and impairments caused by time-varying flat fading channels GMM and kernel-based speaker recognition with the ISIP toolkit Approximate leave-one-out error estimation for learning with smooth, strictly convex margin loss functions Speech enhancement by lateral inhibition and binaural masking A hybrid neural network/rule based system for bilingual text-to-phoneme mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1