{"title":"超越部分着色的算法差异","authors":"N. Bansal, S. Garg","doi":"10.1145/3055399.3055490","DOIUrl":null,"url":null,"abstract":"The partial coloring method is one of the most powerful and widely used method in combinatorial discrepancy problems. However, in many cases it leads to sub-optimal bounds as the partial coloring step must be iterated a logarithmic number of times, and the errors can add up in an adversarial way. We give a new and general algorithmic framework that overcomes the limitations of the partial coloring method and can be applied in a black-box manner to various problems. Using this framework, we give new improved bounds and algorithms for several classic problems in discrepancy. In particular, for Tusnady&'s problem, we give an improved O(log2 n) bound for discrepancy of axis-parallel rectangles and more generally an Od(logdn) bound for d-dimensional boxes in ℝd. Previously, even non-constructively, the best bounds were O(log2.5 n) and Od(logd+0.5n) respectively. Similarly, for the Steinitz problem we give the first algorithm that matches the best known non-constructive bounds due to Banaszczyk in the 𝓁∞ case, and improves the previous algorithmic bounds substantially in the 𝓁2 case. Our framework is based upon a substantial generalization of the techniques developed recently in the context of the Komlós discrepancy problem.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Algorithmic discrepancy beyond partial coloring\",\"authors\":\"N. Bansal, S. Garg\",\"doi\":\"10.1145/3055399.3055490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partial coloring method is one of the most powerful and widely used method in combinatorial discrepancy problems. However, in many cases it leads to sub-optimal bounds as the partial coloring step must be iterated a logarithmic number of times, and the errors can add up in an adversarial way. We give a new and general algorithmic framework that overcomes the limitations of the partial coloring method and can be applied in a black-box manner to various problems. Using this framework, we give new improved bounds and algorithms for several classic problems in discrepancy. In particular, for Tusnady&'s problem, we give an improved O(log2 n) bound for discrepancy of axis-parallel rectangles and more generally an Od(logdn) bound for d-dimensional boxes in ℝd. Previously, even non-constructively, the best bounds were O(log2.5 n) and Od(logd+0.5n) respectively. Similarly, for the Steinitz problem we give the first algorithm that matches the best known non-constructive bounds due to Banaszczyk in the 𝓁∞ case, and improves the previous algorithmic bounds substantially in the 𝓁2 case. Our framework is based upon a substantial generalization of the techniques developed recently in the context of the Komlós discrepancy problem.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The partial coloring method is one of the most powerful and widely used method in combinatorial discrepancy problems. However, in many cases it leads to sub-optimal bounds as the partial coloring step must be iterated a logarithmic number of times, and the errors can add up in an adversarial way. We give a new and general algorithmic framework that overcomes the limitations of the partial coloring method and can be applied in a black-box manner to various problems. Using this framework, we give new improved bounds and algorithms for several classic problems in discrepancy. In particular, for Tusnady&'s problem, we give an improved O(log2 n) bound for discrepancy of axis-parallel rectangles and more generally an Od(logdn) bound for d-dimensional boxes in ℝd. Previously, even non-constructively, the best bounds were O(log2.5 n) and Od(logd+0.5n) respectively. Similarly, for the Steinitz problem we give the first algorithm that matches the best known non-constructive bounds due to Banaszczyk in the 𝓁∞ case, and improves the previous algorithmic bounds substantially in the 𝓁2 case. Our framework is based upon a substantial generalization of the techniques developed recently in the context of the Komlós discrepancy problem.