超越部分着色的算法差异

N. Bansal, S. Garg
{"title":"超越部分着色的算法差异","authors":"N. Bansal, S. Garg","doi":"10.1145/3055399.3055490","DOIUrl":null,"url":null,"abstract":"The partial coloring method is one of the most powerful and widely used method in combinatorial discrepancy problems. However, in many cases it leads to sub-optimal bounds as the partial coloring step must be iterated a logarithmic number of times, and the errors can add up in an adversarial way. We give a new and general algorithmic framework that overcomes the limitations of the partial coloring method and can be applied in a black-box manner to various problems. Using this framework, we give new improved bounds and algorithms for several classic problems in discrepancy. In particular, for Tusnady&'s problem, we give an improved O(log2 n) bound for discrepancy of axis-parallel rectangles and more generally an Od(logdn) bound for d-dimensional boxes in ℝd. Previously, even non-constructively, the best bounds were O(log2.5 n) and Od(logd+0.5n) respectively. Similarly, for the Steinitz problem we give the first algorithm that matches the best known non-constructive bounds due to Banaszczyk in the 𝓁∞ case, and improves the previous algorithmic bounds substantially in the 𝓁2 case. Our framework is based upon a substantial generalization of the techniques developed recently in the context of the Komlós discrepancy problem.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Algorithmic discrepancy beyond partial coloring\",\"authors\":\"N. Bansal, S. Garg\",\"doi\":\"10.1145/3055399.3055490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partial coloring method is one of the most powerful and widely used method in combinatorial discrepancy problems. However, in many cases it leads to sub-optimal bounds as the partial coloring step must be iterated a logarithmic number of times, and the errors can add up in an adversarial way. We give a new and general algorithmic framework that overcomes the limitations of the partial coloring method and can be applied in a black-box manner to various problems. Using this framework, we give new improved bounds and algorithms for several classic problems in discrepancy. In particular, for Tusnady&'s problem, we give an improved O(log2 n) bound for discrepancy of axis-parallel rectangles and more generally an Od(logdn) bound for d-dimensional boxes in ℝd. Previously, even non-constructively, the best bounds were O(log2.5 n) and Od(logd+0.5n) respectively. Similarly, for the Steinitz problem we give the first algorithm that matches the best known non-constructive bounds due to Banaszczyk in the 𝓁∞ case, and improves the previous algorithmic bounds substantially in the 𝓁2 case. Our framework is based upon a substantial generalization of the techniques developed recently in the context of the Komlós discrepancy problem.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

部分着色法是求解组合差异问题中最有效、应用最广泛的方法之一。然而,在许多情况下,它会导致次优边界,因为部分着色步骤必须迭代对数次,并且错误可能以对抗的方式累积。我们给出了一个新的和通用的算法框架,克服了部分着色方法的局限性,并能以黑盒的方式应用于各种问题。在此框架下,我们对几个经典的差异问题给出了新的改进界和算法。特别地,对于Tusnady& s问题,我们给出了一个改进的O(log2 n)界用于轴平行矩形的差异,更一般地说,给出了一个Od(logdn)界用于d维盒子的差异。以前,即使是非建设性的,最好的边界分别是O(log2.5 n)和Od(logd+0.5n)。类似地,对于Steinitz问题,我们给出了在𝓁∞情况下匹配Banaszczyk的最著名的非建设性界的第一个算法,并在𝓁2情况下大大改进了先前的算法界。我们的框架基于最近在Komlós差异问题的背景下开发的技术的大量概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithmic discrepancy beyond partial coloring
The partial coloring method is one of the most powerful and widely used method in combinatorial discrepancy problems. However, in many cases it leads to sub-optimal bounds as the partial coloring step must be iterated a logarithmic number of times, and the errors can add up in an adversarial way. We give a new and general algorithmic framework that overcomes the limitations of the partial coloring method and can be applied in a black-box manner to various problems. Using this framework, we give new improved bounds and algorithms for several classic problems in discrepancy. In particular, for Tusnady&'s problem, we give an improved O(log2 n) bound for discrepancy of axis-parallel rectangles and more generally an Od(logdn) bound for d-dimensional boxes in ℝd. Previously, even non-constructively, the best bounds were O(log2.5 n) and Od(logd+0.5n) respectively. Similarly, for the Steinitz problem we give the first algorithm that matches the best known non-constructive bounds due to Banaszczyk in the 𝓁∞ case, and improves the previous algorithmic bounds substantially in the 𝓁2 case. Our framework is based upon a substantial generalization of the techniques developed recently in the context of the Komlós discrepancy problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online service with delay A simpler and faster strongly polynomial algorithm for generalized flow maximization Low rank approximation with entrywise l1-norm error Fast convergence of learning in games (invited talk) Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed Steiner tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1