Meriem Ali Khoudja, Messaouda Fareh, Hafida Bouarfa
{"title":"基于自编码器的深度嵌入学习大规模本体匹配","authors":"Meriem Ali Khoudja, Messaouda Fareh, Hafida Bouarfa","doi":"10.4018/ijswis.297042","DOIUrl":null,"url":null,"abstract":"Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"155 1","pages":"1-18"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Embedding Learning With Auto-Encoder for Large-Scale Ontology Matching\",\"authors\":\"Meriem Ali Khoudja, Messaouda Fareh, Hafida Bouarfa\",\"doi\":\"10.4018/ijswis.297042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"155 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.297042\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep Embedding Learning With Auto-Encoder for Large-Scale Ontology Matching
Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.