2D动作平台游戏的敌人评估AI

Pichit Promsutipong, Vishnu Kotrajaras
{"title":"2D动作平台游戏的敌人评估AI","authors":"Pichit Promsutipong, Vishnu Kotrajaras","doi":"10.1109/JCSSE.2017.8025906","DOIUrl":null,"url":null,"abstract":"Enemy plays an important role in providing challenge in action-platform games. Our intention is to generate enemies automatically. To ensure that our enemies can be used in actual games, we need to evaluate their qualities. Using human players for the evaluation is not feasible if we generate a lot of enemies or if we are going to use the algorithm in actual games. Our approach is to create a player AI that can play action-platform games with the same performance as human players. That AI's battle performance will then be used to evaluate the generated enemies. This paper presents the definition of battle performance and the AI implementation, combining FSM, search and rule-based heuristics. The AI is shown to perform similar to human players.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enemy evaluation AI for 2D action-platform game\",\"authors\":\"Pichit Promsutipong, Vishnu Kotrajaras\",\"doi\":\"10.1109/JCSSE.2017.8025906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enemy plays an important role in providing challenge in action-platform games. Our intention is to generate enemies automatically. To ensure that our enemies can be used in actual games, we need to evaluate their qualities. Using human players for the evaluation is not feasible if we generate a lot of enemies or if we are going to use the algorithm in actual games. Our approach is to create a player AI that can play action-platform games with the same performance as human players. That AI's battle performance will then be used to evaluate the generated enemies. This paper presents the definition of battle performance and the AI implementation, combining FSM, search and rule-based heuristics. The AI is shown to perform similar to human players.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"26 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2017.8025906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

敌人在动作平台游戏中扮演着提供挑战的重要角色。我们的目的是自动制造敌人。为了确保我们的敌人能够在实际游戏中使用,我们需要评估他们的品质。如果我们产生了大量敌人,或者我们打算在实际游戏中使用算法,那么使用人类玩家进行评估就不可行。我们的方法是创造一个玩家AI,它可以像人类玩家一样玩动作平台游戏。AI的战斗表现将用于评估生成的敌人。结合FSM、搜索和基于规则的启发式方法,提出了战斗性能的定义和人工智能的实现。AI的表现与人类玩家相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enemy evaluation AI for 2D action-platform game
Enemy plays an important role in providing challenge in action-platform games. Our intention is to generate enemies automatically. To ensure that our enemies can be used in actual games, we need to evaluate their qualities. Using human players for the evaluation is not feasible if we generate a lot of enemies or if we are going to use the algorithm in actual games. Our approach is to create a player AI that can play action-platform games with the same performance as human players. That AI's battle performance will then be used to evaluate the generated enemies. This paper presents the definition of battle performance and the AI implementation, combining FSM, search and rule-based heuristics. The AI is shown to perform similar to human players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1