皮肤波传播影响触觉运动:来自空气耦合超声的证据

Gregory Reardon, Yitian Shao, Bharat Dandu, W. Frier, Benjamin Long, Orestis Georgiou, Y. Visell
{"title":"皮肤波传播影响触觉运动:来自空气耦合超声的证据","authors":"Gregory Reardon, Yitian Shao, Bharat Dandu, W. Frier, Benjamin Long, Orestis Georgiou, Y. Visell","doi":"10.1109/WHC.2019.8816150","DOIUrl":null,"url":null,"abstract":"Tactile stimulation of the skin excites cutaneous waves that travel tens of centimeters, but the implications for haptic engineering and perception are not well understood. We present evidence from optical vibrometry that tactile motion cues delivered via air-coupled ultrasound excite complex spatiotemporal wave fields in the hand. We distinguished two physical regimes based on the ratio of the motion speed to the cutaneous wave speed. At low speeds (1-4 m/s), waves generated by a moving stimulus propagated to similar distances in all directions. At high speeds (4-15 m/s), waves in the direction of motion were compressed. We also studied tactile motion perception at these speeds, which were faster than those used in prior studies. Motion sensitivity was impaired when waves were inhibited in front of the moving stimulus. This occurred for motion at high speeds and across disconnected skin areas. Together, our findings suggest that tactile motion perception is aided by waves propagating in the skin. This paper presents the first time-resolved observations of cutaneous responses to focused ultrasound, and contributes practical knowledge for the use of tactile motion and mid-air haptic feedback.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"37 1","pages":"628-633"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cutaneous Wave Propagation Shapes Tactile Motion: Evidence from Air-Coupled Ultrasound\",\"authors\":\"Gregory Reardon, Yitian Shao, Bharat Dandu, W. Frier, Benjamin Long, Orestis Georgiou, Y. Visell\",\"doi\":\"10.1109/WHC.2019.8816150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile stimulation of the skin excites cutaneous waves that travel tens of centimeters, but the implications for haptic engineering and perception are not well understood. We present evidence from optical vibrometry that tactile motion cues delivered via air-coupled ultrasound excite complex spatiotemporal wave fields in the hand. We distinguished two physical regimes based on the ratio of the motion speed to the cutaneous wave speed. At low speeds (1-4 m/s), waves generated by a moving stimulus propagated to similar distances in all directions. At high speeds (4-15 m/s), waves in the direction of motion were compressed. We also studied tactile motion perception at these speeds, which were faster than those used in prior studies. Motion sensitivity was impaired when waves were inhibited in front of the moving stimulus. This occurred for motion at high speeds and across disconnected skin areas. Together, our findings suggest that tactile motion perception is aided by waves propagating in the skin. This paper presents the first time-resolved observations of cutaneous responses to focused ultrasound, and contributes practical knowledge for the use of tactile motion and mid-air haptic feedback.\",\"PeriodicalId\":6702,\"journal\":{\"name\":\"2019 IEEE World Haptics Conference (WHC)\",\"volume\":\"37 1\",\"pages\":\"628-633\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE World Haptics Conference (WHC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHC.2019.8816150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

皮肤的触觉刺激会激发传播数十厘米的皮肤波,但其对触觉工程和感知的影响尚未得到很好的理解。我们提出了光学振动测量的证据,通过空气耦合超声传递的触觉运动线索激发了手部复杂的时空波场。我们根据运动速度与皮肤波速度的比率区分了两种物理状态。在低速时(1-4米/秒),运动刺激产生的波在所有方向上传播到相似的距离。在高速(4-15米/秒)下,运动方向的波被压缩。我们还研究了这些速度下的触觉运动感知,这比之前的研究中使用的速度要快。当波在运动刺激前被抑制时,运动敏感性受损。这种情况发生在高速运动和穿过不相连的皮肤区域时。总之,我们的研究结果表明,触觉运动感知是由在皮肤中传播的波辅助的。本文首次提出了对聚焦超声的皮肤反应的时间分辨观察,并为触觉运动和半空中触觉反馈的使用提供了实用知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cutaneous Wave Propagation Shapes Tactile Motion: Evidence from Air-Coupled Ultrasound
Tactile stimulation of the skin excites cutaneous waves that travel tens of centimeters, but the implications for haptic engineering and perception are not well understood. We present evidence from optical vibrometry that tactile motion cues delivered via air-coupled ultrasound excite complex spatiotemporal wave fields in the hand. We distinguished two physical regimes based on the ratio of the motion speed to the cutaneous wave speed. At low speeds (1-4 m/s), waves generated by a moving stimulus propagated to similar distances in all directions. At high speeds (4-15 m/s), waves in the direction of motion were compressed. We also studied tactile motion perception at these speeds, which were faster than those used in prior studies. Motion sensitivity was impaired when waves were inhibited in front of the moving stimulus. This occurred for motion at high speeds and across disconnected skin areas. Together, our findings suggest that tactile motion perception is aided by waves propagating in the skin. This paper presents the first time-resolved observations of cutaneous responses to focused ultrasound, and contributes practical knowledge for the use of tactile motion and mid-air haptic feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contact with Sliding over a Rotating Ridged Surface: the Turntable Illusion A preliminary apparatus and teaching structure for passive tactile training of stenography Evaluating the Use of Variable Height in Tactile Graphics Ball-type Haptic Interface to Present Impact Points with Vibrations for Televised Ball-based Sporting Event Sparse Actuator Array Combined with Inverse Filter for Multitouch Vibrotactile Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1