改进了WSN中使用一阶和二阶统计量选择簇头的阈值

IF 1.5 Q3 TELECOMMUNICATIONS IET Wireless Sensor Systems Pub Date : 2020-12-01 DOI:10.1049/iet-wss.2020.0048
Sefali Panda, Trupti Mayee Behera, Umesh Chandra Samal, Sushanta Kumar Mohapatra
{"title":"改进了WSN中使用一阶和二阶统计量选择簇头的阈值","authors":"Sefali Panda,&nbsp;Trupti Mayee Behera,&nbsp;Umesh Chandra Samal,&nbsp;Sushanta Kumar Mohapatra","doi":"10.1049/iet-wss.2020.0048","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Wireless sensor network (WSN) comprises of numerous sensors deployed either directly or randomly in the region of interest. Due to the limited power of the sensors, these networks are energy-constrained and thus need efficient power utilisation. Efficient clustering and cluster head (CH) selection ensures balanced energy distribution to the sensors within the WSN and hence prolong the network lifetime. This study proposes the method for evaluating the threshold for the CH selection after each round, which increases the network lifetime and throughput significantly. The threshold for CH selection is modified considering the normalised first-order and second-order statistical parameters, such as mean average low-energy adaptive clustering hierarchy (AvgLEACH) and variance (VarLEACH) of the overall network energy. These methods have been formulated after studying the effect of the number of working nodes in each round on the threshold value selection. Apart from including energy parameter to the threshold equation, the methods of VarLEACH and AvgLEACH are augmented with a residual energy parameter that is local to the nodes and named as VarRLEACH and AvgRLEACH. The simulation results comparing all the methods suggest that the proposed method AvgRLEACH outperforms LEACH by a factor of 1.5 in delivering data to the base station and outlives the network driven by LEACH protocol by 30–40%.</p>\n </div>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-wss.2020.0048","citationCount":"5","resultStr":"{\"title\":\"Modified threshold for cluster head selection in WSN using first and second order statistics\",\"authors\":\"Sefali Panda,&nbsp;Trupti Mayee Behera,&nbsp;Umesh Chandra Samal,&nbsp;Sushanta Kumar Mohapatra\",\"doi\":\"10.1049/iet-wss.2020.0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Wireless sensor network (WSN) comprises of numerous sensors deployed either directly or randomly in the region of interest. Due to the limited power of the sensors, these networks are energy-constrained and thus need efficient power utilisation. Efficient clustering and cluster head (CH) selection ensures balanced energy distribution to the sensors within the WSN and hence prolong the network lifetime. This study proposes the method for evaluating the threshold for the CH selection after each round, which increases the network lifetime and throughput significantly. The threshold for CH selection is modified considering the normalised first-order and second-order statistical parameters, such as mean average low-energy adaptive clustering hierarchy (AvgLEACH) and variance (VarLEACH) of the overall network energy. These methods have been formulated after studying the effect of the number of working nodes in each round on the threshold value selection. Apart from including energy parameter to the threshold equation, the methods of VarLEACH and AvgLEACH are augmented with a residual energy parameter that is local to the nodes and named as VarRLEACH and AvgRLEACH. The simulation results comparing all the methods suggest that the proposed method AvgRLEACH outperforms LEACH by a factor of 1.5 in delivering data to the base station and outlives the network driven by LEACH protocol by 30–40%.</p>\\n </div>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-wss.2020.0048\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2020.0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2020.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 5

摘要

无线传感器网络(WSN)由多个直接或随机部署在感兴趣区域的传感器组成。由于传感器的功率有限,这些网络受到能量限制,因此需要有效的电力利用。有效的聚类和簇头选择保证了能量在传感器间的均衡分布,从而延长了网络的生命周期。本研究提出了评估每轮CH选择阈值的方法,该方法显著提高了网络生命周期和吞吐量。考虑到归一化的一阶和二阶统计参数,如平均低能自适应聚类层次(AvgLEACH)和整体网络能量的方差(VarLEACH),修改了CH选择的阈值。这些方法是在研究了每轮工作节点数对阈值选择的影响后制定的。除了在阈值方程中加入能量参数外,VarLEACH和AvgLEACH方法还增加了节点局部的剩余能量参数,分别命名为VarRLEACH和AvgRLEACH。仿真结果表明,AvgRLEACH方法在向基站传输数据方面的性能是LEACH方法的1.5倍,并且比LEACH协议驱动的网络寿命长30-40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified threshold for cluster head selection in WSN using first and second order statistics

Wireless sensor network (WSN) comprises of numerous sensors deployed either directly or randomly in the region of interest. Due to the limited power of the sensors, these networks are energy-constrained and thus need efficient power utilisation. Efficient clustering and cluster head (CH) selection ensures balanced energy distribution to the sensors within the WSN and hence prolong the network lifetime. This study proposes the method for evaluating the threshold for the CH selection after each round, which increases the network lifetime and throughput significantly. The threshold for CH selection is modified considering the normalised first-order and second-order statistical parameters, such as mean average low-energy adaptive clustering hierarchy (AvgLEACH) and variance (VarLEACH) of the overall network energy. These methods have been formulated after studying the effect of the number of working nodes in each round on the threshold value selection. Apart from including energy parameter to the threshold equation, the methods of VarLEACH and AvgLEACH are augmented with a residual energy parameter that is local to the nodes and named as VarRLEACH and AvgRLEACH. The simulation results comparing all the methods suggest that the proposed method AvgRLEACH outperforms LEACH by a factor of 1.5 in delivering data to the base station and outlives the network driven by LEACH protocol by 30–40%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
期刊最新文献
Enhancing offloading with cybersecurity in edge computing for digital twin‐driven patient monitoring SmartCardio: Advancing cardiac risk prediction through Internet of things and edge cloud intelligence Wearable micro‐electro‐mechanical systems pressure sensors in health care: Advancements and trends—A review Design of shipborne cold chain monitoring system based on multi link compression transmission Optimising multi-user wireless networks through discrete Fourier transform-based channel estimation with cascaded intelligent reflecting surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1