天气预报采用DBSCAN聚类算法

IF 0.3 Q4 MATHEMATICS Annales Mathematicae et Informaticae Pub Date : 2022-01-01 DOI:10.33039/ami.2022.05.001
Aida Chefrour
{"title":"天气预报采用DBSCAN聚类算法","authors":"Aida Chefrour","doi":"10.33039/ami.2022.05.001","DOIUrl":null,"url":null,"abstract":"The main objective of this study is the clustering of meteorological parameters and forecasting weather in the region of Annaba (Algeria) using clustering techniques. The proposed two-stage clustering approach is based on the first stage, on the proposition of ANN-DBSCAN, a combination of the DBSCAN algorithm and an Artificial Neural Network (ANN) for grouping the clusters. Internal indices of validation were used to compare and verify the correctness and efficiency of the results. Our experiments identified five groups, each of which was associated with the area’s usual weather parameters. Our proposed incremental DBSCAN is employed in the second stage to determine the data pattern that can predict the future atmosphere. The natural molecules of the measured pollutants (nitrogen dioxide (NO2), ozone (O3), carbon dioxide (CO2), and sulfur dioxide (SO2)) are directly dependent on weather forecasting. The focus of this research is on a section of the Samasafia database. The proposed algorithm is used to determine the weather trend in that database. Advanced numerical analysis was applied to a few prediction tasks.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"21 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weather forecasting using DBSCAN clustering algorithm\",\"authors\":\"Aida Chefrour\",\"doi\":\"10.33039/ami.2022.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this study is the clustering of meteorological parameters and forecasting weather in the region of Annaba (Algeria) using clustering techniques. The proposed two-stage clustering approach is based on the first stage, on the proposition of ANN-DBSCAN, a combination of the DBSCAN algorithm and an Artificial Neural Network (ANN) for grouping the clusters. Internal indices of validation were used to compare and verify the correctness and efficiency of the results. Our experiments identified five groups, each of which was associated with the area’s usual weather parameters. Our proposed incremental DBSCAN is employed in the second stage to determine the data pattern that can predict the future atmosphere. The natural molecules of the measured pollutants (nitrogen dioxide (NO2), ozone (O3), carbon dioxide (CO2), and sulfur dioxide (SO2)) are directly dependent on weather forecasting. The focus of this research is on a section of the Samasafia database. The proposed algorithm is used to determine the weather trend in that database. Advanced numerical analysis was applied to a few prediction tasks.\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/ami.2022.05.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2022.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是利用聚类技术对安纳巴(阿尔及利亚)地区的气象参数进行聚类和预报天气。提出的两阶段聚类方法基于第一阶段,即基于ANN-DBSCAN的提出,将DBSCAN算法与人工神经网络(ANN)相结合,对聚类进行分组。利用内部验证指标对结果的正确性和有效性进行了比较和验证。我们的实验确定了五组,每一组都与该地区的常规天气参数有关。第二阶段使用我们提出的增量DBSCAN来确定可以预测未来大气的数据模式。测量到的污染物(二氧化氮(NO2)、臭氧(O3)、二氧化碳(CO2)和二氧化硫(SO2))的自然分子直接依赖于天气预报。本研究的重点是Samasafia数据库的一个部分。该算法用于确定该数据库中的天气趋势。将先进的数值分析方法应用于一些预测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weather forecasting using DBSCAN clustering algorithm
The main objective of this study is the clustering of meteorological parameters and forecasting weather in the region of Annaba (Algeria) using clustering techniques. The proposed two-stage clustering approach is based on the first stage, on the proposition of ANN-DBSCAN, a combination of the DBSCAN algorithm and an Artificial Neural Network (ANN) for grouping the clusters. Internal indices of validation were used to compare and verify the correctness and efficiency of the results. Our experiments identified five groups, each of which was associated with the area’s usual weather parameters. Our proposed incremental DBSCAN is employed in the second stage to determine the data pattern that can predict the future atmosphere. The natural molecules of the measured pollutants (nitrogen dioxide (NO2), ozone (O3), carbon dioxide (CO2), and sulfur dioxide (SO2)) are directly dependent on weather forecasting. The focus of this research is on a section of the Samasafia database. The proposed algorithm is used to determine the weather trend in that database. Advanced numerical analysis was applied to a few prediction tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Using irreducible polynomials for random number generation Solving Hungarian natural language processing tasks with multilingual generative models Stability condition of multiclass classical retrials: a revised regenerative proof Sensitivity analysis of a single server finite-source retrial queueing system with two-way communication and catastrophic breakdown using simulation On the generalized Fibonacci like sequences and matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1