基于时间特征的图注意网络谣言检测研究

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2023-03-02 DOI:10.4018/ijdwm.319342
Xiaohui Yang, Hailong Ma, Miao Wang
{"title":"基于时间特征的图注意网络谣言检测研究","authors":"Xiaohui Yang, Hailong Ma, Miao Wang","doi":"10.4018/ijdwm.319342","DOIUrl":null,"url":null,"abstract":"The higher-order and temporal characteristics of tweet sequences are often ignored in the field of rumor detection. In this paper, a new rumor detection method (T-BiGAT) is proposed to capture the temporal features between tweets by combining a graph attention network (GAT) and gated recurrent neural network (GRU). First, timestamps are calculated for each tweet within the same event. On the premise of the same timestamp, two different propagation subgraphs are constructed according to the response relationship between tweets. Then, GRU is used to capture intralayer dependencies between sibling nodes in the subtree; global features of each subtree are extracted using an improved GAT. Furthermore, GRU is reused to capture the temporal dependencies of individual subgraphs at different timestamps. Finally, weights are assigned to the global feature vectors of different timestamp subtrees for aggregation, and a mapping function is used to classify the aggregated vectors.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Rumor Detection Based on a Graph Attention Network With Temporal Features\",\"authors\":\"Xiaohui Yang, Hailong Ma, Miao Wang\",\"doi\":\"10.4018/ijdwm.319342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The higher-order and temporal characteristics of tweet sequences are often ignored in the field of rumor detection. In this paper, a new rumor detection method (T-BiGAT) is proposed to capture the temporal features between tweets by combining a graph attention network (GAT) and gated recurrent neural network (GRU). First, timestamps are calculated for each tweet within the same event. On the premise of the same timestamp, two different propagation subgraphs are constructed according to the response relationship between tweets. Then, GRU is used to capture intralayer dependencies between sibling nodes in the subtree; global features of each subtree are extracted using an improved GAT. Furthermore, GRU is reused to capture the temporal dependencies of individual subgraphs at different timestamps. Finally, weights are assigned to the global feature vectors of different timestamp subtrees for aggregation, and a mapping function is used to classify the aggregated vectors.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.319342\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.319342","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在谣言检测领域,推文序列的高阶特征和时间特征往往被忽略。本文提出了一种新的谣言检测方法(T-BiGAT),该方法将图注意网络(GAT)和门控递归神经网络(GRU)相结合,捕捉推文之间的时间特征。首先,为同一事件中的每条tweet计算时间戳。在时间戳相同的前提下,根据tweets之间的响应关系构造两个不同的传播子图。然后,使用GRU捕获子树中兄弟节点之间的层内依赖关系;使用改进的GAT提取每个子树的全局特征。此外,可以重用GRU来捕获各个子图在不同时间戳上的时间依赖性。最后,对不同时间戳子树的全局特征向量赋权进行聚合,并使用映射函数对聚合向量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Rumor Detection Based on a Graph Attention Network With Temporal Features
The higher-order and temporal characteristics of tweet sequences are often ignored in the field of rumor detection. In this paper, a new rumor detection method (T-BiGAT) is proposed to capture the temporal features between tweets by combining a graph attention network (GAT) and gated recurrent neural network (GRU). First, timestamps are calculated for each tweet within the same event. On the premise of the same timestamp, two different propagation subgraphs are constructed according to the response relationship between tweets. Then, GRU is used to capture intralayer dependencies between sibling nodes in the subtree; global features of each subtree are extracted using an improved GAT. Furthermore, GRU is reused to capture the temporal dependencies of individual subgraphs at different timestamps. Finally, weights are assigned to the global feature vectors of different timestamp subtrees for aggregation, and a mapping function is used to classify the aggregated vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1