基于NetADHICT的1999年DARPA/Lincoln实验室IDS评估数据分析

Carson D. Brown, Alex Cowperthwaite, Abdulrahman Hijazi, Anil Somayaji
{"title":"基于NetADHICT的1999年DARPA/Lincoln实验室IDS评估数据分析","authors":"Carson D. Brown, Alex Cowperthwaite, Abdulrahman Hijazi, Anil Somayaji","doi":"10.1109/CISDA.2009.5356522","DOIUrl":null,"url":null,"abstract":"The 1999 DARPA/Lincoln Laboratory IDS Evaluation Data has been widely used in the intrusion detection and networking community, even though it is known to have a number of artifacts. Here we show that many of these artifacts, including the lack of damaged or unusual background packets and uniform host distribution, can be easily extracted using NetADHICT, a tool we developed for understanding networks. In addition, using NetADHICT we were able to identify extreme temporal variation in the data, a characteristic that was not identified in past analyses. These results illustrate the utility of NetADHICT in characterizing network traces for experimental purposes.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"13 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Analysis of the 1999 DARPA/Lincoln Laboratory IDS evaluation data with NetADHICT\",\"authors\":\"Carson D. Brown, Alex Cowperthwaite, Abdulrahman Hijazi, Anil Somayaji\",\"doi\":\"10.1109/CISDA.2009.5356522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 1999 DARPA/Lincoln Laboratory IDS Evaluation Data has been widely used in the intrusion detection and networking community, even though it is known to have a number of artifacts. Here we show that many of these artifacts, including the lack of damaged or unusual background packets and uniform host distribution, can be easily extracted using NetADHICT, a tool we developed for understanding networks. In addition, using NetADHICT we were able to identify extreme temporal variation in the data, a characteristic that was not identified in past analyses. These results illustrate the utility of NetADHICT in characterizing network traces for experimental purposes.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"13 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

1999年DARPA/林肯实验室IDS评估数据已被广泛应用于入侵检测和网络社区,尽管它已知有许多工件。在这里,我们展示了许多这些工件,包括缺乏损坏或不寻常的后台数据包和统一的主机分布,可以使用NetADHICT轻松提取,NetADHICT是我们为理解网络而开发的工具。此外,使用NetADHICT,我们能够识别数据中的极端时间变化,这是过去分析中没有发现的特征。这些结果说明了NetADHICT在为实验目的表征网络轨迹方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the 1999 DARPA/Lincoln Laboratory IDS evaluation data with NetADHICT
The 1999 DARPA/Lincoln Laboratory IDS Evaluation Data has been widely used in the intrusion detection and networking community, even though it is known to have a number of artifacts. Here we show that many of these artifacts, including the lack of damaged or unusual background packets and uniform host distribution, can be easily extracted using NetADHICT, a tool we developed for understanding networks. In addition, using NetADHICT we were able to identify extreme temporal variation in the data, a characteristic that was not identified in past analyses. These results illustrate the utility of NetADHICT in characterizing network traces for experimental purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1