美国期权的最小二乘蒙特卡罗协同处理

Jinzhe Yang, Ce Guo, W. Luk, Terence Nahar
{"title":"美国期权的最小二乘蒙特卡罗协同处理","authors":"Jinzhe Yang, Ce Guo, W. Luk, Terence Nahar","doi":"10.1109/FPT.2014.7082753","DOIUrl":null,"url":null,"abstract":"American options are popularly traded in the financial market, so pricing those options becomes crucial in practice. In reality, many popular pricing models do not have analytical solutions. Hence techniques such as Monte Carlo are often used in practice. This paper presents a CPU-FPGA collaborative accelerator using state-of-the-art Least-Square Monte Carlo method, for pricing American options. We provide a new sequence of generating the Monte Carlo paths, and a precalculation strategy for the regression process. Our design is customisable for different pricing models, discretisation schemes, and regression functions. The Heston model is used as a case study for evaluating our strategy. Experimental results show that an FPGA-based solution could provide 22 to 64.5 times faster than a single-core CPU implementation.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"08 1","pages":"52-59"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative processing of Least-Square Monte Carlo for American options\",\"authors\":\"Jinzhe Yang, Ce Guo, W. Luk, Terence Nahar\",\"doi\":\"10.1109/FPT.2014.7082753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"American options are popularly traded in the financial market, so pricing those options becomes crucial in practice. In reality, many popular pricing models do not have analytical solutions. Hence techniques such as Monte Carlo are often used in practice. This paper presents a CPU-FPGA collaborative accelerator using state-of-the-art Least-Square Monte Carlo method, for pricing American options. We provide a new sequence of generating the Monte Carlo paths, and a precalculation strategy for the regression process. Our design is customisable for different pricing models, discretisation schemes, and regression functions. The Heston model is used as a case study for evaluating our strategy. Experimental results show that an FPGA-based solution could provide 22 to 64.5 times faster than a single-core CPU implementation.\",\"PeriodicalId\":6877,\"journal\":{\"name\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"08 1\",\"pages\":\"52-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2014.7082753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

美国期权在金融市场上广泛交易,因此期权的定价在实践中变得至关重要。在现实中,许多流行的定价模型没有分析解决方案。因此,在实践中经常使用蒙特卡罗等技术。本文提出了一种基于最小二乘蒙特卡罗方法的CPU-FPGA协同加速器,用于美式期权定价。我们提供了一种新的蒙特卡罗路径生成序列,以及一种回归过程的预计算策略。我们的设计可针对不同的定价模型、离散化方案和回归函数进行定制。赫斯顿模型被用作评估我们战略的案例研究。实验结果表明,基于fpga的解决方案可以提供比单核CPU实现快22到64.5倍的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative processing of Least-Square Monte Carlo for American options
American options are popularly traded in the financial market, so pricing those options becomes crucial in practice. In reality, many popular pricing models do not have analytical solutions. Hence techniques such as Monte Carlo are often used in practice. This paper presents a CPU-FPGA collaborative accelerator using state-of-the-art Least-Square Monte Carlo method, for pricing American options. We provide a new sequence of generating the Monte Carlo paths, and a precalculation strategy for the regression process. Our design is customisable for different pricing models, discretisation schemes, and regression functions. The Heston model is used as a case study for evaluating our strategy. Experimental results show that an FPGA-based solution could provide 22 to 64.5 times faster than a single-core CPU implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair and Program Co-Chairs Accelerator-in-Switch: A Novel Cooperation Framework for FPGAs and GPUs FPGA Accelerated HPC and Data Analytics Novel Neural Network Applications on New Python Enabled Platforms High-level synthesis - the right side of history
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1