{"title":"动态k图:一种动态图学习和时间图信号聚类的算法","authors":"Hesam Araghi, M. Babaie-zadeh, S. Achard","doi":"10.23919/Eusipco47968.2020.9287661","DOIUrl":null,"url":null,"abstract":"Graph signal processing (GSP) have found many applications in different domains. The underlying graph may not be available in all applications, and it should be learned from the data. There exist complicated data, where the graph changes over time. Hence, it is necessary to estimate the dynamic graph. In this paper, a new dynamic graph learning algorithm, called dynamic K -graphs, is proposed. This algorithm is capable of both estimating the time-varying graph and clustering the temporal graph signals. Numerical experiments demonstrate the high performance of this algorithm compared with other algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"60 6 1","pages":"2195-2199"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic K-Graphs: an Algorithm for Dynamic Graph Learning and Temporal Graph Signal Clustering\",\"authors\":\"Hesam Araghi, M. Babaie-zadeh, S. Achard\",\"doi\":\"10.23919/Eusipco47968.2020.9287661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph signal processing (GSP) have found many applications in different domains. The underlying graph may not be available in all applications, and it should be learned from the data. There exist complicated data, where the graph changes over time. Hence, it is necessary to estimate the dynamic graph. In this paper, a new dynamic graph learning algorithm, called dynamic K -graphs, is proposed. This algorithm is capable of both estimating the time-varying graph and clustering the temporal graph signals. Numerical experiments demonstrate the high performance of this algorithm compared with other algorithms.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"60 6 1\",\"pages\":\"2195-2199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic K-Graphs: an Algorithm for Dynamic Graph Learning and Temporal Graph Signal Clustering
Graph signal processing (GSP) have found many applications in different domains. The underlying graph may not be available in all applications, and it should be learned from the data. There exist complicated data, where the graph changes over time. Hence, it is necessary to estimate the dynamic graph. In this paper, a new dynamic graph learning algorithm, called dynamic K -graphs, is proposed. This algorithm is capable of both estimating the time-varying graph and clustering the temporal graph signals. Numerical experiments demonstrate the high performance of this algorithm compared with other algorithms.