Khandaker Mamun Ahmed, Farid Ghareh Mohammadi, M. Matus, Farzan Shenavarmasouleh, Luiz Manella Pereira, Zisis Ioannis, M. Amini
{"title":"利用更快的基于区域的卷积神经网络实现航拍图像中的实时房屋检测","authors":"Khandaker Mamun Ahmed, Farid Ghareh Mohammadi, M. Matus, Farzan Shenavarmasouleh, Luiz Manella Pereira, Zisis Ioannis, M. Amini","doi":"10.58245/ipsi.tir.2302.06","DOIUrl":null,"url":null,"abstract":"In the past few years, automatic building detection in aerial images has become an emerging field in computer vision. Detecting the specific types of houses will provide information in urbanization, change detection, and urban monitoring that play increasingly important roles in modern city planning and natural hazard preparedness. In this paper, we demonstrate the effectiveness of detecting various types of houses in aerial imagery using Faster Region-based Convolutional Neural Network (Faster-RCNN). After formulating the dataset and extracting bounding-box information, pre-trained ResNet50 is used to get the feature maps. The fully convolutional Region Proposal Network (RPN) first predicts the bounds and objectness score of objects (in this case house) from the feature maps. Then, the Region of Interest (RoI) pooling layer extracts interested regions to detect objects that are present in the images. To the best of our knowledge, this is the first attempt at detecting houses using Faster R-CNN that has achieved satisfactory results. This experiment opens a new path to conduct and extent the works not only for civil and environmental domain but also other applied science disciplines.","PeriodicalId":41192,"journal":{"name":"IPSI BgD Transactions on Internet Research","volume":"71 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Towards Real-time House Detection in Aerial Imagery Using Faster Region-based Convolutional Neural Network\\\"\",\"authors\":\"Khandaker Mamun Ahmed, Farid Ghareh Mohammadi, M. Matus, Farzan Shenavarmasouleh, Luiz Manella Pereira, Zisis Ioannis, M. Amini\",\"doi\":\"10.58245/ipsi.tir.2302.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, automatic building detection in aerial images has become an emerging field in computer vision. Detecting the specific types of houses will provide information in urbanization, change detection, and urban monitoring that play increasingly important roles in modern city planning and natural hazard preparedness. In this paper, we demonstrate the effectiveness of detecting various types of houses in aerial imagery using Faster Region-based Convolutional Neural Network (Faster-RCNN). After formulating the dataset and extracting bounding-box information, pre-trained ResNet50 is used to get the feature maps. The fully convolutional Region Proposal Network (RPN) first predicts the bounds and objectness score of objects (in this case house) from the feature maps. Then, the Region of Interest (RoI) pooling layer extracts interested regions to detect objects that are present in the images. To the best of our knowledge, this is the first attempt at detecting houses using Faster R-CNN that has achieved satisfactory results. This experiment opens a new path to conduct and extent the works not only for civil and environmental domain but also other applied science disciplines.\",\"PeriodicalId\":41192,\"journal\":{\"name\":\"IPSI BgD Transactions on Internet Research\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSI BgD Transactions on Internet Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58245/ipsi.tir.2302.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSI BgD Transactions on Internet Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58245/ipsi.tir.2302.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
"Towards Real-time House Detection in Aerial Imagery Using Faster Region-based Convolutional Neural Network"
In the past few years, automatic building detection in aerial images has become an emerging field in computer vision. Detecting the specific types of houses will provide information in urbanization, change detection, and urban monitoring that play increasingly important roles in modern city planning and natural hazard preparedness. In this paper, we demonstrate the effectiveness of detecting various types of houses in aerial imagery using Faster Region-based Convolutional Neural Network (Faster-RCNN). After formulating the dataset and extracting bounding-box information, pre-trained ResNet50 is used to get the feature maps. The fully convolutional Region Proposal Network (RPN) first predicts the bounds and objectness score of objects (in this case house) from the feature maps. Then, the Region of Interest (RoI) pooling layer extracts interested regions to detect objects that are present in the images. To the best of our knowledge, this is the first attempt at detecting houses using Faster R-CNN that has achieved satisfactory results. This experiment opens a new path to conduct and extent the works not only for civil and environmental domain but also other applied science disciplines.