{"title":"多区域暖通空调系统的建模、分析和状态反馈控制设计","authors":"Almahdi Abdo-Allah, T. Iqbal, K. Pope","doi":"10.1155/2018/4303580","DOIUrl":null,"url":null,"abstract":"A HVAC system is modeled by applying a state space MIMO (multi-input/multioutput) system method for control system design and analysis. Thermal models are developed using the simulation program IDA Indoor Climate and Energy. The building has four floors in total, with separate air-handling units (AHUs) on each floor. The system’s eight main input data are hot water and the energy usage for each AHU, while the eight main outputs are return airflow temperature and CO2 levels for AHUs. The factors of wind direction and velocity are also applied as disturbances. By comparing usage data on simulated power consumption versus measured data for the three months of October, November, and December 2016, good agreement was achieved with simulated data. The main aim is to develop a state feedback controller and then apply it toward optimal functionality of a control system. After utilizing the MATLAB identification toolbox, a MIMO system-based state space model is developed.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"24 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling, Analysis, and State Feedback Control Design of a Multizone HVAC System\",\"authors\":\"Almahdi Abdo-Allah, T. Iqbal, K. Pope\",\"doi\":\"10.1155/2018/4303580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A HVAC system is modeled by applying a state space MIMO (multi-input/multioutput) system method for control system design and analysis. Thermal models are developed using the simulation program IDA Indoor Climate and Energy. The building has four floors in total, with separate air-handling units (AHUs) on each floor. The system’s eight main input data are hot water and the energy usage for each AHU, while the eight main outputs are return airflow temperature and CO2 levels for AHUs. The factors of wind direction and velocity are also applied as disturbances. By comparing usage data on simulated power consumption versus measured data for the three months of October, November, and December 2016, good agreement was achieved with simulated data. The main aim is to develop a state feedback controller and then apply it toward optimal functionality of a control system. After utilizing the MATLAB identification toolbox, a MIMO system-based state space model is developed.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"24 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/4303580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/4303580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling, Analysis, and State Feedback Control Design of a Multizone HVAC System
A HVAC system is modeled by applying a state space MIMO (multi-input/multioutput) system method for control system design and analysis. Thermal models are developed using the simulation program IDA Indoor Climate and Energy. The building has four floors in total, with separate air-handling units (AHUs) on each floor. The system’s eight main input data are hot water and the energy usage for each AHU, while the eight main outputs are return airflow temperature and CO2 levels for AHUs. The factors of wind direction and velocity are also applied as disturbances. By comparing usage data on simulated power consumption versus measured data for the three months of October, November, and December 2016, good agreement was achieved with simulated data. The main aim is to develop a state feedback controller and then apply it toward optimal functionality of a control system. After utilizing the MATLAB identification toolbox, a MIMO system-based state space model is developed.