基于数据流学习的多尺度概念漂移检测方法

XueSong Wang, Q. Kang, Mengchu Zhou, SiYa Yao
{"title":"基于数据流学习的多尺度概念漂移检测方法","authors":"XueSong Wang, Q. Kang, Mengchu Zhou, SiYa Yao","doi":"10.1109/COASE.2018.8560554","DOIUrl":null,"url":null,"abstract":"Concept drifts can occur in data streams, which disable any models built on static data distribution to fit dynamic or recurrent concepts. If there is a feature that can monitor the stableness of such distribution, then we have a proper reference to adapt the model. Based on this idea, we propose a novel approach named Multiscale Drift Detection Test (MDDT) that localizes abrupt drift points when detection feature values fluctuate. MDDT is based on a resampling scheme and a paired student t-test. It applies a detection procedure on a broad and a narrow scale. This multiscale structure not only reduces massive time of a constant checking process, but also filters noise in the detection features. Experiments are performed via synthetic and real-world datasets. The results indicate that the proposed method outperforms the state-of-art algorithms in terms of computation cost and average accuracy.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"27 1","pages":"786-790"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Multiscale Concept Drift Detection Method for Learning from Data Streams\",\"authors\":\"XueSong Wang, Q. Kang, Mengchu Zhou, SiYa Yao\",\"doi\":\"10.1109/COASE.2018.8560554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept drifts can occur in data streams, which disable any models built on static data distribution to fit dynamic or recurrent concepts. If there is a feature that can monitor the stableness of such distribution, then we have a proper reference to adapt the model. Based on this idea, we propose a novel approach named Multiscale Drift Detection Test (MDDT) that localizes abrupt drift points when detection feature values fluctuate. MDDT is based on a resampling scheme and a paired student t-test. It applies a detection procedure on a broad and a narrow scale. This multiscale structure not only reduces massive time of a constant checking process, but also filters noise in the detection features. Experiments are performed via synthetic and real-world datasets. The results indicate that the proposed method outperforms the state-of-art algorithms in terms of computation cost and average accuracy.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"27 1\",\"pages\":\"786-790\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

概念漂移可能发生在数据流中,这会使任何建立在静态数据分布上的模型无法适应动态或反复出现的概念。如果有一个特征可以监控这种分布的稳定性,那么我们就有了一个合适的参考来调整模型。基于这一思想,我们提出了一种新的方法——多尺度漂移检测测试(MDDT),该方法可以在检测特征值波动时定位突变漂移点。MDDT基于重抽样方案和配对学生t检验。它适用于广泛和狭窄范围的检测程序。这种多尺度结构不仅减少了恒定检测过程的大量时间,而且还滤除了检测特征中的噪声。实验通过合成和真实世界的数据集进行。结果表明,该方法在计算量和平均精度方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multiscale Concept Drift Detection Method for Learning from Data Streams
Concept drifts can occur in data streams, which disable any models built on static data distribution to fit dynamic or recurrent concepts. If there is a feature that can monitor the stableness of such distribution, then we have a proper reference to adapt the model. Based on this idea, we propose a novel approach named Multiscale Drift Detection Test (MDDT) that localizes abrupt drift points when detection feature values fluctuate. MDDT is based on a resampling scheme and a paired student t-test. It applies a detection procedure on a broad and a narrow scale. This multiscale structure not only reduces massive time of a constant checking process, but also filters noise in the detection features. Experiments are performed via synthetic and real-world datasets. The results indicate that the proposed method outperforms the state-of-art algorithms in terms of computation cost and average accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1