利用可逆神经网络从光度法确定恒星参数

V. Ksoll, Lynton Ardizzone, R. Klessen, U. Köthe, E. Sabbi, M. Robberto, Dimitrios M. Gouliermis, C. Rother, P. Zeidler, M. Gennaro
{"title":"利用可逆神经网络从光度法确定恒星参数","authors":"V. Ksoll, Lynton Ardizzone, R. Klessen, U. Köthe, E. Sabbi, M. Robberto, Dimitrios M. Gouliermis, C. Rother, P. Zeidler, M. Gennaro","doi":"10.1093/mnras/staa2931","DOIUrl":null,"url":null,"abstract":"Photometric surveys with the Hubble Space Telescope (HST) remain one of the most efficient tools in astronomy to study stellar clusters with high resolution and deep coverage. Estimating physical parameters of their constituents from photometry alone, however, is not a trivial task. Leveraging sophisticated stellar evolution models one can simulate observations and characterise stars and clusters. Due to observational constraints, such as extinction, photometric uncertainties and low filter coverage, as well as intrinsic effects of stellar evolution, this inverse problem suffers from degenerate mappings between the observable and physical parameter space that are difficult to detect and break. We employ a novel deep learning approach called conditional invertible neural network (cINN) to solve the inverse problem of predicting physical parameters from photometry on an individual star basis. Employing latent variables to encode information otherwise lost in the mapping from physical to observable parameter space, the cINN can predict full posterior distributions for the underlying physical parameters. We build this approach on carefully curated synthetic data sets derived from the PARSEC stellar evolution models. For simplicity we only consider single metallicity populations and neglect all effects except extinction. We benchmark our approach on HST data of two well studied stellar clusters, Westerlund 2 and NGC 6397. On the synthetic data we find overall excellent performance, with age being the most difficult parameter to constrain. For the real observations we retrieve reasonable results and are able to confirm previous findings for Westerlund 2 on cluster age ($1.04_{-0.90}^{+8.48}\\,\\mathrm{Myr} $), mass segregation, and the stellar initial mass function.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stellar parameter determination from photometry using invertible neural networks\",\"authors\":\"V. Ksoll, Lynton Ardizzone, R. Klessen, U. Köthe, E. Sabbi, M. Robberto, Dimitrios M. Gouliermis, C. Rother, P. Zeidler, M. Gennaro\",\"doi\":\"10.1093/mnras/staa2931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photometric surveys with the Hubble Space Telescope (HST) remain one of the most efficient tools in astronomy to study stellar clusters with high resolution and deep coverage. Estimating physical parameters of their constituents from photometry alone, however, is not a trivial task. Leveraging sophisticated stellar evolution models one can simulate observations and characterise stars and clusters. Due to observational constraints, such as extinction, photometric uncertainties and low filter coverage, as well as intrinsic effects of stellar evolution, this inverse problem suffers from degenerate mappings between the observable and physical parameter space that are difficult to detect and break. We employ a novel deep learning approach called conditional invertible neural network (cINN) to solve the inverse problem of predicting physical parameters from photometry on an individual star basis. Employing latent variables to encode information otherwise lost in the mapping from physical to observable parameter space, the cINN can predict full posterior distributions for the underlying physical parameters. We build this approach on carefully curated synthetic data sets derived from the PARSEC stellar evolution models. For simplicity we only consider single metallicity populations and neglect all effects except extinction. We benchmark our approach on HST data of two well studied stellar clusters, Westerlund 2 and NGC 6397. On the synthetic data we find overall excellent performance, with age being the most difficult parameter to constrain. For the real observations we retrieve reasonable results and are able to confirm previous findings for Westerlund 2 on cluster age ($1.04_{-0.90}^{+8.48}\\\\,\\\\mathrm{Myr} $), mass segregation, and the stellar initial mass function.\",\"PeriodicalId\":8493,\"journal\":{\"name\":\"arXiv: Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa2931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa2931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

哈勃太空望远镜(HST)的光度测量仍然是天文学中研究星团最有效的工具之一,具有高分辨率和深度覆盖。然而,仅从光度法来估计其成分的物理参数并不是一项简单的任务。利用复杂的恒星演化模型,人们可以模拟观测并描述恒星和星团的特征。由于观测的限制,如消光、光度不确定性和低滤光片覆盖率,以及恒星演化的内在影响,这个逆问题遭受了观测和物理参数空间之间的简并映射,难以检测和打破。我们采用了一种新的深度学习方法,称为条件可逆神经网络(cINN)来解决从单个恒星的光度预测物理参数的逆问题。利用潜在变量对信息进行编码,否则会在从物理到可观察参数空间的映射中丢失,cINN可以预测潜在物理参数的完整后验分布。我们在精心策划的合成数据集上建立了这种方法,这些数据集来自PARSEC恒星演化模型。为简单起见,我们只考虑单一金属丰度种群,忽略除灭绝外的所有影响。我们以两个研究得很好的星团Westerlund 2和NGC 6397的HST数据为基准。在综合数据上,我们发现整体性能优异,年龄是最难约束的参数。对于实际观测,我们获得了合理的结果,并且能够证实先前关于Westerlund 2的星团年龄($1.04_{-0.90}}{+8.48}\,\mathrm{Myr} $),质量分离和恒星初始质量函数的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stellar parameter determination from photometry using invertible neural networks
Photometric surveys with the Hubble Space Telescope (HST) remain one of the most efficient tools in astronomy to study stellar clusters with high resolution and deep coverage. Estimating physical parameters of their constituents from photometry alone, however, is not a trivial task. Leveraging sophisticated stellar evolution models one can simulate observations and characterise stars and clusters. Due to observational constraints, such as extinction, photometric uncertainties and low filter coverage, as well as intrinsic effects of stellar evolution, this inverse problem suffers from degenerate mappings between the observable and physical parameter space that are difficult to detect and break. We employ a novel deep learning approach called conditional invertible neural network (cINN) to solve the inverse problem of predicting physical parameters from photometry on an individual star basis. Employing latent variables to encode information otherwise lost in the mapping from physical to observable parameter space, the cINN can predict full posterior distributions for the underlying physical parameters. We build this approach on carefully curated synthetic data sets derived from the PARSEC stellar evolution models. For simplicity we only consider single metallicity populations and neglect all effects except extinction. We benchmark our approach on HST data of two well studied stellar clusters, Westerlund 2 and NGC 6397. On the synthetic data we find overall excellent performance, with age being the most difficult parameter to constrain. For the real observations we retrieve reasonable results and are able to confirm previous findings for Westerlund 2 on cluster age ($1.04_{-0.90}^{+8.48}\,\mathrm{Myr} $), mass segregation, and the stellar initial mass function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Found: a rapidly spinning white dwarf in LAMOST J024048.51+195226.9 Magnetic helicity and energy budget around large confined and eruptive solar flares. On the Periods and Nature of Superhumps Deciphering Solar Magnetic Activity. II. The Solar Cycle Clock and the Onset of Solar Minimum Conditions Mapping the Youngest and Most Massive Stars in the Tarantula Nebula with MUSE-NFM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1