基于DNN分类模型的掩码选择语音增强技术

Bong-Ki Lee
{"title":"基于DNN分类模型的掩码选择语音增强技术","authors":"Bong-Ki Lee","doi":"10.23919/Eusipco47968.2020.9287410","DOIUrl":null,"url":null,"abstract":"This paper presents a speech enhancement algorithm using a DNN classification model combined with noise classification-based ensemble. Although various single-channel speech enhancement algorithms based on deep learning have been recently developed, since it is optimized for reducing the mean square error, it can not accurately estimate the actual target values in a regression task, resulting in muffled enhanced speech. Therefore, this paper proposes the DNN classification-based single-channel speech enhancement algorithm to overcome disadvantages of the existing DNN regression-based speech enhancement algorithms. To replace the DNN regression task into the classification task, gain mask templates are predefined using k-means clustering among the gain masks. The input feature vector extracted from the microphone input signal is fed into the DNN’s input and then an optimal gain mask is selected from the gain mask templates. Furthermore, we define the gain mask templates for each noise environment using the DNN-based noise classification to cover various noise environments and use an ensemble structure based on a probability of the noise classification stage.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"40 1","pages":"436-440"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNN Classification Model-based Speech Enhancement Using Mask Selection Technique\",\"authors\":\"Bong-Ki Lee\",\"doi\":\"10.23919/Eusipco47968.2020.9287410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a speech enhancement algorithm using a DNN classification model combined with noise classification-based ensemble. Although various single-channel speech enhancement algorithms based on deep learning have been recently developed, since it is optimized for reducing the mean square error, it can not accurately estimate the actual target values in a regression task, resulting in muffled enhanced speech. Therefore, this paper proposes the DNN classification-based single-channel speech enhancement algorithm to overcome disadvantages of the existing DNN regression-based speech enhancement algorithms. To replace the DNN regression task into the classification task, gain mask templates are predefined using k-means clustering among the gain masks. The input feature vector extracted from the microphone input signal is fed into the DNN’s input and then an optimal gain mask is selected from the gain mask templates. Furthermore, we define the gain mask templates for each noise environment using the DNN-based noise classification to cover various noise environments and use an ensemble structure based on a probability of the noise classification stage.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"40 1\",\"pages\":\"436-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度神经网络分类模型与基于噪声分类的集成相结合的语音增强算法。虽然最近开发了各种基于深度学习的单通道语音增强算法,但由于其优化是为了减小均方误差,因此在回归任务中无法准确估计实际目标值,导致增强语音的模糊。因此,本文提出了基于DNN分类的单通道语音增强算法,克服了现有基于DNN回归的语音增强算法的不足。为了将DNN回归任务替换为分类任务,在增益掩码之间使用k-means聚类来预定义增益掩码模板。从麦克风输入信号中提取的输入特征向量被送入深度神经网络的输入,然后从增益掩模模板中选择最优增益掩模。此外,我们使用基于dnn的噪声分类来定义每个噪声环境的增益掩模模板,以覆盖各种噪声环境,并使用基于噪声分类阶段概率的集成结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNN Classification Model-based Speech Enhancement Using Mask Selection Technique
This paper presents a speech enhancement algorithm using a DNN classification model combined with noise classification-based ensemble. Although various single-channel speech enhancement algorithms based on deep learning have been recently developed, since it is optimized for reducing the mean square error, it can not accurately estimate the actual target values in a regression task, resulting in muffled enhanced speech. Therefore, this paper proposes the DNN classification-based single-channel speech enhancement algorithm to overcome disadvantages of the existing DNN regression-based speech enhancement algorithms. To replace the DNN regression task into the classification task, gain mask templates are predefined using k-means clustering among the gain masks. The input feature vector extracted from the microphone input signal is fed into the DNN’s input and then an optimal gain mask is selected from the gain mask templates. Furthermore, we define the gain mask templates for each noise environment using the DNN-based noise classification to cover various noise environments and use an ensemble structure based on a probability of the noise classification stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1