双夹紧单壁卷曲碳纳米管的自由振动:一种新的尺寸依赖连续体模型

F. Darvishi, O. Rahmani
{"title":"双夹紧单壁卷曲碳纳米管的自由振动:一种新的尺寸依赖连续体模型","authors":"F. Darvishi, O. Rahmani","doi":"10.22034/JSM.2020.1883837.1520","DOIUrl":null,"url":null,"abstract":"In this paper, the size dependent vibration behavior of doubly clamped single-walled coiled carbon nanotubes (CCNTs) is investigated using nonlocal helical beam model. This model is based on Washizu’s beam theory so that all displacement components of CCNT in the equations of motion are defined at the centroidal principal axis and transverse shear deformations are considered. After deriving the nonlocal free vibration equations, they are solved by the generalized differential quadrature method (GDQM). Then, the natural frequencies and corresponding mode shapes are determined for the clamped-clamped boundary conditions (BCs). After that, a parametric study on the effect of different parameters, including the helix cylinder to the tube diameters ratio , the number of pitches, the helix pitch angle, and the nonlocal parameter on the natural frequencies is conducted. It is worth noting that the results of the proposed method would be useful in the practical applications of CCNTs such as using in nanoelectromechanical systems.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"75 1","pages":"114-133"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On The Free Vibration of Doubly Clamped Single-Walled Coiled Carbon Nanotubes: A Novel Size Dependent Continuum Model\",\"authors\":\"F. Darvishi, O. Rahmani\",\"doi\":\"10.22034/JSM.2020.1883837.1520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the size dependent vibration behavior of doubly clamped single-walled coiled carbon nanotubes (CCNTs) is investigated using nonlocal helical beam model. This model is based on Washizu’s beam theory so that all displacement components of CCNT in the equations of motion are defined at the centroidal principal axis and transverse shear deformations are considered. After deriving the nonlocal free vibration equations, they are solved by the generalized differential quadrature method (GDQM). Then, the natural frequencies and corresponding mode shapes are determined for the clamped-clamped boundary conditions (BCs). After that, a parametric study on the effect of different parameters, including the helix cylinder to the tube diameters ratio , the number of pitches, the helix pitch angle, and the nonlocal parameter on the natural frequencies is conducted. It is worth noting that the results of the proposed method would be useful in the practical applications of CCNTs such as using in nanoelectromechanical systems.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"75 1\",\"pages\":\"114-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2020.1883837.1520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2020.1883837.1520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用非局域螺旋梁模型研究了双夹紧单壁螺旋碳纳米管的尺寸相关振动特性。该模型基于和足梁理论,运动方程中所有CCNT的位移分量都在质心主轴处定义,并考虑了横向剪切变形。在推导出非局部自由振动方程后,采用广义微分正交法对其进行求解。然后,确定了夹固边界条件(bc)的固有频率和相应的振型。然后,对螺旋圆柱与管径比、螺距数、螺旋螺距角、非定域参数等参数对固有频率的影响进行了参数化研究。值得注意的是,所提出的方法的结果将有助于ccnt的实际应用,例如在纳米机电系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On The Free Vibration of Doubly Clamped Single-Walled Coiled Carbon Nanotubes: A Novel Size Dependent Continuum Model
In this paper, the size dependent vibration behavior of doubly clamped single-walled coiled carbon nanotubes (CCNTs) is investigated using nonlocal helical beam model. This model is based on Washizu’s beam theory so that all displacement components of CCNT in the equations of motion are defined at the centroidal principal axis and transverse shear deformations are considered. After deriving the nonlocal free vibration equations, they are solved by the generalized differential quadrature method (GDQM). Then, the natural frequencies and corresponding mode shapes are determined for the clamped-clamped boundary conditions (BCs). After that, a parametric study on the effect of different parameters, including the helix cylinder to the tube diameters ratio , the number of pitches, the helix pitch angle, and the nonlocal parameter on the natural frequencies is conducted. It is worth noting that the results of the proposed method would be useful in the practical applications of CCNTs such as using in nanoelectromechanical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1