液体锂壁实验中球形环面等离子体的建模

IF 0.3 1区 艺术学 0 MUSIC NINETEENTH CENTURY MUSIC Pub Date : 2002-11-07 DOI:10.1109/FUSION.2002.1027714
R. Kaita, S. Jardin, B. Jones, C. Kessel, R. Majeski, J. Spaleta, R. Woolley, L. Zakharov, B. Nelson, M. Ulrickson
{"title":"液体锂壁实验中球形环面等离子体的建模","authors":"R. Kaita, S. Jardin, B. Jones, C. Kessel, R. Majeski, J. Spaleta, R. Woolley, L. Zakharov, B. Nelson, M. Ulrickson","doi":"10.1109/FUSION.2002.1027714","DOIUrl":null,"url":null,"abstract":"Liquid metal walls have the potential solve to first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.","PeriodicalId":44192,"journal":{"name":"NINETEENTH CENTURY MUSIC","volume":"161 1","pages":"368-371"},"PeriodicalIF":0.3000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of spherical torus plasmas for liquid lithium wall experiments\",\"authors\":\"R. Kaita, S. Jardin, B. Jones, C. Kessel, R. Majeski, J. Spaleta, R. Woolley, L. Zakharov, B. Nelson, M. Ulrickson\",\"doi\":\"10.1109/FUSION.2002.1027714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid metal walls have the potential solve to first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.\",\"PeriodicalId\":44192,\"journal\":{\"name\":\"NINETEENTH CENTURY MUSIC\",\"volume\":\"161 1\",\"pages\":\"368-371\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NINETEENTH CENTURY MUSIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.2002.1027714\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NINETEENTH CENTURY MUSIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.2002.1027714","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 1

摘要

液态金属壁有可能解决核聚变反应堆的第一壁问题,如热负荷和干壁侵蚀、中子损伤和激活、氚库存和繁殖。在短期内,这种壁面可以作为稳定磁流体动力(MHD)模式的基础。此外,锂壁的低回收特性可以用于颗粒控制。液态锂实验已经在当前驱动实验-升级(CDX-U)中开始。用环形局部限制器限制等离子体已经进行了研究,用全环形锂限制器的实验正在进行中。提出了一种用于国家球面环面实验(NSTX)的液体表面模块(LSM)。在这个较大的ST中,等离子体电流超过1毫安,典型的放电半径约为68厘米。LSM的主要目的是控制颗粒,目前正在考虑将其安装在水平中间面或导流器区域。一个关键的考虑因素是在液态锂表面位置涡流的大小。在等离子体启动和中断的过程中,由这种电流和磁场产生的力可以迫使导电液体离开它后面的表面。托卡马克模拟代码(TSC)已经被用来估计这种影响的大小。这个程序是一个二维,时间相关,自由边界模拟代码,解决了轴对称环形等离子体的MHD方程。根据与实际ST平衡相匹配的计算,涡流密度可以在液态锂的位置确定。初步结果表明,影响可能是显著的,明确处理环形局部结构的方法正在研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of spherical torus plasmas for liquid lithium wall experiments
Liquid metal walls have the potential solve to first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
11
期刊介绍: 19th-Century Music covers all aspects of Western art music between the mid-eighteenth and mid-twentieth centuries. We welcome--in no particular order--considerations of composers and compositions, styles, performance, historical watersheds, cultural formations, critical methods, musical institutions, ideas, and topics not named on this list. Our aim is to publish contributions to ongoing conversations at the leading edge of musical and multidisciplinary scholarship.
期刊最新文献
Black Musicality and the Invention of Talent: The Case of Thomas Wiggins Remixing Multimovement Works, Classical Music Concept Albums, and Twenty-First-Century Pianists’ Interpretations of the Canon Directions to Contributors Contributors Robert Heller’s Magical Mystery Tours
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1