打破孟德尔随机化中的赢家诅咒:再随机化逆方差加权估计器

Xinwei Ma, Jingshen Wang, Chong Wu
{"title":"打破孟德尔随机化中的赢家诅咒:再随机化逆方差加权估计器","authors":"Xinwei Ma, Jingshen Wang, Chong Wu","doi":"10.1214/22-aos2247","DOIUrl":null,"url":null,"abstract":"Developments in genome-wide association studies and the increasing availability of summary genetic association data have made the application of two-sample Mendelian Randomization (MR) with summary data increasingly popular. Conventional two-sample MR methods often employ the same sample for selecting relevant genetic variants and for constructing final causal estimates. Such a practice often leads to biased causal effect estimates due to the well known\"winner's curse\"phenomenon. To address this fundamental challenge, we first examine its consequence on causal effect estimation both theoretically and empirically. We then propose a novel framework that systematically breaks the winner's curse, leading to unbiased association effect estimates for the selected genetic variants. Building upon the proposed framework, we introduce a novel rerandomized inverse variance weighted estimator that is consistent when selection and parameter estimation are conducted on the same sample. Under appropriate conditions, we show that the proposed RIVW estimator for the causal effect converges to a normal distribution asymptotically and its variance can be well estimated. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical examples.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breaking the winner’s curse in Mendelian randomization: Rerandomized inverse variance weighted estimator\",\"authors\":\"Xinwei Ma, Jingshen Wang, Chong Wu\",\"doi\":\"10.1214/22-aos2247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developments in genome-wide association studies and the increasing availability of summary genetic association data have made the application of two-sample Mendelian Randomization (MR) with summary data increasingly popular. Conventional two-sample MR methods often employ the same sample for selecting relevant genetic variants and for constructing final causal estimates. Such a practice often leads to biased causal effect estimates due to the well known\\\"winner's curse\\\"phenomenon. To address this fundamental challenge, we first examine its consequence on causal effect estimation both theoretically and empirically. We then propose a novel framework that systematically breaks the winner's curse, leading to unbiased association effect estimates for the selected genetic variants. Building upon the proposed framework, we introduce a novel rerandomized inverse variance weighted estimator that is consistent when selection and parameter estimation are conducted on the same sample. Under appropriate conditions, we show that the proposed RIVW estimator for the causal effect converges to a normal distribution asymptotically and its variance can be well estimated. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical examples.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aos2247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

全基因组关联研究的发展和汇总遗传关联数据的日益可用性使得双样本孟德尔随机化(MR)与汇总数据的应用越来越受欢迎。传统的双样本MR方法通常使用相同的样本来选择相关的遗传变异并构建最终的因果估计。由于众所周知的“赢家的诅咒”现象,这种做法经常导致有偏见的因果效应估计。为了解决这一基本挑战,我们首先从理论上和经验上检查其对因果效应估计的影响。然后,我们提出了一个新的框架,系统地打破了赢家的诅咒,导致对所选遗传变异的无偏关联效应估计。在提出的框架的基础上,我们引入了一种新的再随机化反方差加权估计器,当对同一样本进行选择和参数估计时,该估计器是一致的。在适当的条件下,我们证明了所提出的因果效应的RIVW估计量渐近收敛于正态分布,并且可以很好地估计其方差。我们通过蒙特卡罗实验和两个经验例子说明了我们的方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breaking the winner’s curse in Mendelian randomization: Rerandomized inverse variance weighted estimator
Developments in genome-wide association studies and the increasing availability of summary genetic association data have made the application of two-sample Mendelian Randomization (MR) with summary data increasingly popular. Conventional two-sample MR methods often employ the same sample for selecting relevant genetic variants and for constructing final causal estimates. Such a practice often leads to biased causal effect estimates due to the well known"winner's curse"phenomenon. To address this fundamental challenge, we first examine its consequence on causal effect estimation both theoretically and empirically. We then propose a novel framework that systematically breaks the winner's curse, leading to unbiased association effect estimates for the selected genetic variants. Building upon the proposed framework, we introduce a novel rerandomized inverse variance weighted estimator that is consistent when selection and parameter estimation are conducted on the same sample. Under appropriate conditions, we show that the proposed RIVW estimator for the causal effect converges to a normal distribution asymptotically and its variance can be well estimated. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1