Yawen Li, G. Song, Shuang Hao, Juzheng Mao, Aiguo Song
{"title":"基于ORB-SLAM2的室外动态环境语义立体视觉SLAM","authors":"Yawen Li, G. Song, Shuang Hao, Juzheng Mao, Aiguo Song","doi":"10.1108/ir-09-2022-0236","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe prerequisite for most traditional visual simultaneous localization and mapping (V-SLAM) algorithms is that most objects in the environment should be static or in low-speed locomotion. These algorithms rely on geometric information of the environment and restrict the application scenarios with dynamic objects. Semantic segmentation can be used to extract deep features from images to identify dynamic objects in the real world. Therefore, V-SLAM fused with semantic information can reduce the influence from dynamic objects and achieve higher accuracy. This paper aims to present a new semantic stereo V-SLAM method toward outdoor dynamic environments for more accurate pose estimation.\n\n\nDesign/methodology/approach\nFirst, the Deeplabv3+ semantic segmentation model is adopted to recognize semantic information about dynamic objects in the outdoor scenes. Second, an approach that combines prior knowledge to determine the dynamic hierarchy of moveable objects is proposed, which depends on the pixel movement between frames. Finally, a semantic stereo V-SLAM based on ORB-SLAM2 to calculate accurate trajectory in dynamic environments is presented, which selects corresponding feature points on static regions and eliminates useless feature points on dynamic regions.\n\n\nFindings\nThe proposed method is successfully verified on the public data set KITTI and ZED2 self-collected data set in the real world. The proposed V-SLAM system can extract the semantic information and track feature points steadily in dynamic environments. Absolute pose error and relative pose error are used to evaluate the feasibility of the proposed method. Experimental results show significant improvements in root mean square error and standard deviation error on both the KITTI data set and an unmanned aerial vehicle. That indicates this method can be effectively applied to outdoor environments.\n\n\nOriginality/value\nThe main contribution of this study is that a new semantic stereo V-SLAM method is proposed with greater robustness and stability, which reduces the impact of moving objects in dynamic scenes.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic stereo visual SLAM toward outdoor dynamic environments based on ORB-SLAM2\",\"authors\":\"Yawen Li, G. Song, Shuang Hao, Juzheng Mao, Aiguo Song\",\"doi\":\"10.1108/ir-09-2022-0236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe prerequisite for most traditional visual simultaneous localization and mapping (V-SLAM) algorithms is that most objects in the environment should be static or in low-speed locomotion. These algorithms rely on geometric information of the environment and restrict the application scenarios with dynamic objects. Semantic segmentation can be used to extract deep features from images to identify dynamic objects in the real world. Therefore, V-SLAM fused with semantic information can reduce the influence from dynamic objects and achieve higher accuracy. This paper aims to present a new semantic stereo V-SLAM method toward outdoor dynamic environments for more accurate pose estimation.\\n\\n\\nDesign/methodology/approach\\nFirst, the Deeplabv3+ semantic segmentation model is adopted to recognize semantic information about dynamic objects in the outdoor scenes. Second, an approach that combines prior knowledge to determine the dynamic hierarchy of moveable objects is proposed, which depends on the pixel movement between frames. Finally, a semantic stereo V-SLAM based on ORB-SLAM2 to calculate accurate trajectory in dynamic environments is presented, which selects corresponding feature points on static regions and eliminates useless feature points on dynamic regions.\\n\\n\\nFindings\\nThe proposed method is successfully verified on the public data set KITTI and ZED2 self-collected data set in the real world. The proposed V-SLAM system can extract the semantic information and track feature points steadily in dynamic environments. Absolute pose error and relative pose error are used to evaluate the feasibility of the proposed method. Experimental results show significant improvements in root mean square error and standard deviation error on both the KITTI data set and an unmanned aerial vehicle. That indicates this method can be effectively applied to outdoor environments.\\n\\n\\nOriginality/value\\nThe main contribution of this study is that a new semantic stereo V-SLAM method is proposed with greater robustness and stability, which reduces the impact of moving objects in dynamic scenes.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-09-2022-0236\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-09-2022-0236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Semantic stereo visual SLAM toward outdoor dynamic environments based on ORB-SLAM2
Purpose
The prerequisite for most traditional visual simultaneous localization and mapping (V-SLAM) algorithms is that most objects in the environment should be static or in low-speed locomotion. These algorithms rely on geometric information of the environment and restrict the application scenarios with dynamic objects. Semantic segmentation can be used to extract deep features from images to identify dynamic objects in the real world. Therefore, V-SLAM fused with semantic information can reduce the influence from dynamic objects and achieve higher accuracy. This paper aims to present a new semantic stereo V-SLAM method toward outdoor dynamic environments for more accurate pose estimation.
Design/methodology/approach
First, the Deeplabv3+ semantic segmentation model is adopted to recognize semantic information about dynamic objects in the outdoor scenes. Second, an approach that combines prior knowledge to determine the dynamic hierarchy of moveable objects is proposed, which depends on the pixel movement between frames. Finally, a semantic stereo V-SLAM based on ORB-SLAM2 to calculate accurate trajectory in dynamic environments is presented, which selects corresponding feature points on static regions and eliminates useless feature points on dynamic regions.
Findings
The proposed method is successfully verified on the public data set KITTI and ZED2 self-collected data set in the real world. The proposed V-SLAM system can extract the semantic information and track feature points steadily in dynamic environments. Absolute pose error and relative pose error are used to evaluate the feasibility of the proposed method. Experimental results show significant improvements in root mean square error and standard deviation error on both the KITTI data set and an unmanned aerial vehicle. That indicates this method can be effectively applied to outdoor environments.
Originality/value
The main contribution of this study is that a new semantic stereo V-SLAM method is proposed with greater robustness and stability, which reduces the impact of moving objects in dynamic scenes.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.