数据挖掘应用中有效数据分类的混合特征选择方法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2019-01-01 DOI:10.4018/IJGHPC.2019010101
Ilangovan Sangaiya, A. V. A. Kumar
{"title":"数据挖掘应用中有效数据分类的混合特征选择方法","authors":"Ilangovan Sangaiya, A. V. A. Kumar","doi":"10.4018/IJGHPC.2019010101","DOIUrl":null,"url":null,"abstract":"In data mining, people require feature selection to select relevant features and to remove unimportant irrelevant features from a original data set based on some evolution criteria. Filter and wrapper are the two methods used but here the authors have proposed a hybrid feature selection method to take advantage of both methods. The proposed method uses symmetrical uncertainty and genetic algorithms for selecting the optimal feature subset. This has been done so as to improve processing time by reducing the dimension of the data set without compromising the classification accuracy. This proposed hybrid algorithm is much faster and scales well to the data set in terms of selected features, classification accuracy and running time than most existing algorithms.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"7 1","pages":"1-16"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Feature Selection Method for Effective Data Classification in Data Mining Applications\",\"authors\":\"Ilangovan Sangaiya, A. V. A. Kumar\",\"doi\":\"10.4018/IJGHPC.2019010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining, people require feature selection to select relevant features and to remove unimportant irrelevant features from a original data set based on some evolution criteria. Filter and wrapper are the two methods used but here the authors have proposed a hybrid feature selection method to take advantage of both methods. The proposed method uses symmetrical uncertainty and genetic algorithms for selecting the optimal feature subset. This has been done so as to improve processing time by reducing the dimension of the data set without compromising the classification accuracy. This proposed hybrid algorithm is much faster and scales well to the data set in terms of selected features, classification accuracy and running time than most existing algorithms.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"7 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2019010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

在数据挖掘中,人们需要特征选择,根据一定的演化准则从原始数据集中选择出相关的特征,并去除不重要的不相关的特征。过滤器和包装器是常用的两种方法,但在这里,作者提出了一种混合的特征选择方法来利用这两种方法。该方法采用对称不确定性和遗传算法选择最优特征子集。这样做是为了在不影响分类精度的情况下通过减少数据集的维数来改善处理时间。本文提出的混合算法在特征选择、分类精度和运行时间方面都比大多数现有算法具有更高的速度和对数据集的扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Feature Selection Method for Effective Data Classification in Data Mining Applications
In data mining, people require feature selection to select relevant features and to remove unimportant irrelevant features from a original data set based on some evolution criteria. Filter and wrapper are the two methods used but here the authors have proposed a hybrid feature selection method to take advantage of both methods. The proposed method uses symmetrical uncertainty and genetic algorithms for selecting the optimal feature subset. This has been done so as to improve processing time by reducing the dimension of the data set without compromising the classification accuracy. This proposed hybrid algorithm is much faster and scales well to the data set in terms of selected features, classification accuracy and running time than most existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1