基于机器学习技术的汽车二氧化碳排放预测分析

M. Manvitha, M. Vani Pujitha, N. Prasad, B. Yashitha Anju
{"title":"基于机器学习技术的汽车二氧化碳排放预测分析","authors":"M. Manvitha, M. Vani Pujitha, N. Prasad, B. Yashitha Anju","doi":"10.1109/IDCIoT56793.2023.10053539","DOIUrl":null,"url":null,"abstract":"1.80 metric tonnes of CO2 are emitted by citizens in India, which is highly detrimental to all living beings. Climate change and glacier melting are the results of CO2 emissions. Sea levels are rising as a result of global warming, which is mostly caused by CO2. In the past, the prediction has been accomplished using statistical approaches including the t-test, ANOVA test, ARIMA, and SARIMAX. The Random Forest, Decision Tree, and Regression Models are increasingly used to forecast CO2 emissions. When several vehicle feature inputs are used, multivariate polynomial regression and multiple linear regression may reliably forecast the emissions. For inputs with a single feature, single linear regression is used for the prediction. Based on factors including engine size, fuel type, cylinder count, vehicle class, and model, CO2 emissions are anticipated. Python Scikit-Learn and the Matplotlib package are used to analyze CO2 emissions. The efficiency of the implemented models is assessed by using performance metrics. The accuracy of each model is predicted by using the Regression Score (R2-Score), MAE (Mean Absolute Error), and MSE (Mean Squared Error).","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"31 1","pages":"394-401"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predictive Analysis on CO2 Emissions in Automobiles using Machine Learning Techniques\",\"authors\":\"M. Manvitha, M. Vani Pujitha, N. Prasad, B. Yashitha Anju\",\"doi\":\"10.1109/IDCIoT56793.2023.10053539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1.80 metric tonnes of CO2 are emitted by citizens in India, which is highly detrimental to all living beings. Climate change and glacier melting are the results of CO2 emissions. Sea levels are rising as a result of global warming, which is mostly caused by CO2. In the past, the prediction has been accomplished using statistical approaches including the t-test, ANOVA test, ARIMA, and SARIMAX. The Random Forest, Decision Tree, and Regression Models are increasingly used to forecast CO2 emissions. When several vehicle feature inputs are used, multivariate polynomial regression and multiple linear regression may reliably forecast the emissions. For inputs with a single feature, single linear regression is used for the prediction. Based on factors including engine size, fuel type, cylinder count, vehicle class, and model, CO2 emissions are anticipated. Python Scikit-Learn and the Matplotlib package are used to analyze CO2 emissions. The efficiency of the implemented models is assessed by using performance metrics. The accuracy of each model is predicted by using the Regression Score (R2-Score), MAE (Mean Absolute Error), and MSE (Mean Squared Error).\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"31 1\",\"pages\":\"394-401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度公民每年排放1.8吨二氧化碳,这对所有生物都是非常有害的。气候变化和冰川融化是二氧化碳排放的结果。由于全球变暖,海平面正在上升,而这主要是由二氧化碳引起的。在过去,预测是通过统计方法完成的,包括t检验、ANOVA检验、ARIMA和SARIMAX。随机森林、决策树和回归模型越来越多地用于预测二氧化碳排放。当使用多个车辆特征输入时,多元多项式回归和多元线性回归可以可靠地预测排放。对于具有单一特征的输入,单线性回归用于预测。根据发动机尺寸、燃料类型、气缸数量、车辆类别和型号等因素,预计二氧化碳排放量。Python Scikit-Learn和Matplotlib包用于分析二氧化碳排放。通过使用性能度量来评估所实现模型的效率。使用回归评分(R2-Score)、平均绝对误差(MAE)和均方误差(MSE)预测每个模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Predictive Analysis on CO2 Emissions in Automobiles using Machine Learning Techniques
1.80 metric tonnes of CO2 are emitted by citizens in India, which is highly detrimental to all living beings. Climate change and glacier melting are the results of CO2 emissions. Sea levels are rising as a result of global warming, which is mostly caused by CO2. In the past, the prediction has been accomplished using statistical approaches including the t-test, ANOVA test, ARIMA, and SARIMAX. The Random Forest, Decision Tree, and Regression Models are increasingly used to forecast CO2 emissions. When several vehicle feature inputs are used, multivariate polynomial regression and multiple linear regression may reliably forecast the emissions. For inputs with a single feature, single linear regression is used for the prediction. Based on factors including engine size, fuel type, cylinder count, vehicle class, and model, CO2 emissions are anticipated. Python Scikit-Learn and the Matplotlib package are used to analyze CO2 emissions. The efficiency of the implemented models is assessed by using performance metrics. The accuracy of each model is predicted by using the Regression Score (R2-Score), MAE (Mean Absolute Error), and MSE (Mean Squared Error).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
期刊最新文献
Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain Prevention of Aflatoxin in Peanut Using Naive Bayes Model Smart Energy Meter and Monitoring System using Internet of Things (IoT) Maximizing the Net Present Value of Resource-Constrained Project Scheduling Problems using Recurrent Neural Network with Genetic Algorithm Framework for Implementation of Personality Inventory Model on Natural Language Processing with Personality Traits Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1