神经网络观测器在显著极同步发电机动态参数在线估计中的应用

O. Shariati, A. Zin, M. Aghamohammadi
{"title":"神经网络观测器在显著极同步发电机动态参数在线估计中的应用","authors":"O. Shariati, A. Zin, M. Aghamohammadi","doi":"10.1109/ICMSAO.2011.5775505","DOIUrl":null,"url":null,"abstract":"Parameter identification is critical for modern control strategies in electrical power systems which is considered both dynamic performance and energy efficiency. This paper presents a novel application of ANN observers in estimating and tracking Salient-Pole Synchronous Generator Dynamic Parameters using time-domain, on-line disturbance measurements. The data for training ANN Observers are obtained through off-line simulations of a salient-pole synchronous generator operating in a one-machine-infinite-bus environment. The Levenberg-Marquardt algorithm has been adopted and assimilated into the back-propagation learning algorithm for training feed-forward neural networks. The inputs of ANNs are organized in conformity with the results of the observability analysis of synchronous generator dynamic parameters in its dynamic behavior. A collection of ANNs with same inputs but different outputs are developed to determine a set of the dynamic parameters. The ANNs are employed to estimate the dynamic parameters by the measurements which are carried out within each kind of fault separately. The trained ANNs are tested with on-line measurements to identify the dynamic parameters. Simulation studies indicate the ANN observer has a great ability to identify the dynamic parameters of salient-pole synchronous generator. The results also show that the tests which have given better results in estimation of each dynamic parameter can be obtained.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":"25 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Application of neural network observer for on-line estimation of salient-pole synchronous generators' dynamic parameters using the operating data\",\"authors\":\"O. Shariati, A. Zin, M. Aghamohammadi\",\"doi\":\"10.1109/ICMSAO.2011.5775505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter identification is critical for modern control strategies in electrical power systems which is considered both dynamic performance and energy efficiency. This paper presents a novel application of ANN observers in estimating and tracking Salient-Pole Synchronous Generator Dynamic Parameters using time-domain, on-line disturbance measurements. The data for training ANN Observers are obtained through off-line simulations of a salient-pole synchronous generator operating in a one-machine-infinite-bus environment. The Levenberg-Marquardt algorithm has been adopted and assimilated into the back-propagation learning algorithm for training feed-forward neural networks. The inputs of ANNs are organized in conformity with the results of the observability analysis of synchronous generator dynamic parameters in its dynamic behavior. A collection of ANNs with same inputs but different outputs are developed to determine a set of the dynamic parameters. The ANNs are employed to estimate the dynamic parameters by the measurements which are carried out within each kind of fault separately. The trained ANNs are tested with on-line measurements to identify the dynamic parameters. Simulation studies indicate the ANN observer has a great ability to identify the dynamic parameters of salient-pole synchronous generator. The results also show that the tests which have given better results in estimation of each dynamic parameter can be obtained.\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":\"25 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

电力系统既要考虑动态性能又要考虑能源效率,参数辨识是现代控制策略的关键。本文提出了一种基于时域在线扰动测量的人工神经网络观测器在估计和跟踪显著极同步发电机动态参数方面的新应用。训练人工神经网络观测器的数据是通过在单机无限总线环境下运行的凸极同步发电机的离线模拟获得的。Levenberg-Marquardt算法被引入到反向传播学习算法中,用于训练前馈神经网络。根据同步发电机动态特性参数的可观测性分析结果对人工神经网络的输入进行组织。开发了一组具有相同输入但不同输出的人工神经网络来确定一组动态参数。利用人工神经网络分别对每一类故障进行测量,估计其动态参数。对训练好的人工神经网络进行在线测试,以识别动态参数。仿真研究表明,该观测器对显著极同步发电机的动态参数具有较强的辨识能力。试验结果表明,该方法对各动态参数的估计效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of neural network observer for on-line estimation of salient-pole synchronous generators' dynamic parameters using the operating data
Parameter identification is critical for modern control strategies in electrical power systems which is considered both dynamic performance and energy efficiency. This paper presents a novel application of ANN observers in estimating and tracking Salient-Pole Synchronous Generator Dynamic Parameters using time-domain, on-line disturbance measurements. The data for training ANN Observers are obtained through off-line simulations of a salient-pole synchronous generator operating in a one-machine-infinite-bus environment. The Levenberg-Marquardt algorithm has been adopted and assimilated into the back-propagation learning algorithm for training feed-forward neural networks. The inputs of ANNs are organized in conformity with the results of the observability analysis of synchronous generator dynamic parameters in its dynamic behavior. A collection of ANNs with same inputs but different outputs are developed to determine a set of the dynamic parameters. The ANNs are employed to estimate the dynamic parameters by the measurements which are carried out within each kind of fault separately. The trained ANNs are tested with on-line measurements to identify the dynamic parameters. Simulation studies indicate the ANN observer has a great ability to identify the dynamic parameters of salient-pole synchronous generator. The results also show that the tests which have given better results in estimation of each dynamic parameter can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact and Scope of Electric Power Generation Demand Using Renewable Energy Resources Due to COVID-19 Introductory Lectures on Convex Optimization - A Basic Course Development of energy harvesting device using piezoelectric material Modelling and simulation of solar chimney power plant performances in southern region of Algeria A sequential approach for fault detection and identification of vehicles' ultrasonic parking sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1