T. Tokoroyama, T. Nishimoto, Y. Murakami, Akiyuki Honda, Hideaki Mitsui, Y. Terai, M. Murashima, Woo-Young Lee, N. Umehara
{"title":"自动传动液润滑下金属材料表面摩擦形成摩擦膜的力学特性评价","authors":"T. Tokoroyama, T. Nishimoto, Y. Murakami, Akiyuki Honda, Hideaki Mitsui, Y. Terai, M. Murashima, Woo-Young Lee, N. Umehara","doi":"10.2474/trol.16.255","DOIUrl":null,"url":null,"abstract":"In this study, nano-scratch tests were conducted using atomic force microscope (AFM) to clarify the hardness of a tribofilm derived from an additive (Fluid A or Fluid B in automatic-transmission fluid) formed on an SKS3 cold work tool steel substrate surface. Comparisons between nano-indentation hardness tests and AFM nano-scratch tests were performed for each specimen. Prior to these tests, the tribofilms on the SKS3 substrate were examined with energy-dispersive spectroscopy (EDS). In order to calculate the hardness of the tribofilm from the nano-scratch results, we assumed that the AFM diamond tip acted as an abrasive to plough the tribofilm. The phosphorous-derived tribofilm formed from Fluid A was harder than the sulfur-derived tribofilm from Fluid B, and it was calculated that the phosphorous-derived tribofilm was approximately 2.64 GPa and the sulfur-derived tribofilm was 1.89 GPa. After 10 nanoindentation hardness tests on each tribofilm, the maximum indentation depth into the tribofilm formed from Fluid A was approximately 31 nm, while it was approximately 36 nm for Fluid B. These results are qualitatively consistent with the hardness results obtained by the AFM nano-scratch test method.","PeriodicalId":23314,"journal":{"name":"Tribology Online","volume":"270 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of Mechanical Characteristics of Tribofilm Formed on the Surface of Metal Material Due to Friction under Lubrication with Automatic Transmission Fluid\",\"authors\":\"T. Tokoroyama, T. Nishimoto, Y. Murakami, Akiyuki Honda, Hideaki Mitsui, Y. Terai, M. Murashima, Woo-Young Lee, N. Umehara\",\"doi\":\"10.2474/trol.16.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, nano-scratch tests were conducted using atomic force microscope (AFM) to clarify the hardness of a tribofilm derived from an additive (Fluid A or Fluid B in automatic-transmission fluid) formed on an SKS3 cold work tool steel substrate surface. Comparisons between nano-indentation hardness tests and AFM nano-scratch tests were performed for each specimen. Prior to these tests, the tribofilms on the SKS3 substrate were examined with energy-dispersive spectroscopy (EDS). In order to calculate the hardness of the tribofilm from the nano-scratch results, we assumed that the AFM diamond tip acted as an abrasive to plough the tribofilm. The phosphorous-derived tribofilm formed from Fluid A was harder than the sulfur-derived tribofilm from Fluid B, and it was calculated that the phosphorous-derived tribofilm was approximately 2.64 GPa and the sulfur-derived tribofilm was 1.89 GPa. After 10 nanoindentation hardness tests on each tribofilm, the maximum indentation depth into the tribofilm formed from Fluid A was approximately 31 nm, while it was approximately 36 nm for Fluid B. These results are qualitatively consistent with the hardness results obtained by the AFM nano-scratch test method.\",\"PeriodicalId\":23314,\"journal\":{\"name\":\"Tribology Online\",\"volume\":\"270 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2474/trol.16.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2474/trol.16.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Evaluation of Mechanical Characteristics of Tribofilm Formed on the Surface of Metal Material Due to Friction under Lubrication with Automatic Transmission Fluid
In this study, nano-scratch tests were conducted using atomic force microscope (AFM) to clarify the hardness of a tribofilm derived from an additive (Fluid A or Fluid B in automatic-transmission fluid) formed on an SKS3 cold work tool steel substrate surface. Comparisons between nano-indentation hardness tests and AFM nano-scratch tests were performed for each specimen. Prior to these tests, the tribofilms on the SKS3 substrate were examined with energy-dispersive spectroscopy (EDS). In order to calculate the hardness of the tribofilm from the nano-scratch results, we assumed that the AFM diamond tip acted as an abrasive to plough the tribofilm. The phosphorous-derived tribofilm formed from Fluid A was harder than the sulfur-derived tribofilm from Fluid B, and it was calculated that the phosphorous-derived tribofilm was approximately 2.64 GPa and the sulfur-derived tribofilm was 1.89 GPa. After 10 nanoindentation hardness tests on each tribofilm, the maximum indentation depth into the tribofilm formed from Fluid A was approximately 31 nm, while it was approximately 36 nm for Fluid B. These results are qualitatively consistent with the hardness results obtained by the AFM nano-scratch test method.