{"title":"工具钢的增材制造*","authors":"C. Escher, C. Mutke","doi":"10.1515/htm-2022-1002","DOIUrl":null,"url":null,"abstract":"Abstract Additive manufacturing of tool steels represents a great challenge, yet it offers new possibilities for the tool manufacture of, for example, complex forming tools with conformal cooling. First, this contribution gives an overview of the most relevant additive manufacturing processes, the materials and processing concepts. By means of a hybrid manufactured press hardening tool for high-strength sheet metal parts, an example of practical implementation is presented subsequently.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":"73 1","pages":"143 - 155"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of Tool Steels*\",\"authors\":\"C. Escher, C. Mutke\",\"doi\":\"10.1515/htm-2022-1002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Additive manufacturing of tool steels represents a great challenge, yet it offers new possibilities for the tool manufacture of, for example, complex forming tools with conformal cooling. First, this contribution gives an overview of the most relevant additive manufacturing processes, the materials and processing concepts. By means of a hybrid manufactured press hardening tool for high-strength sheet metal parts, an example of practical implementation is presented subsequently.\",\"PeriodicalId\":44294,\"journal\":{\"name\":\"HTM-Journal of Heat Treatment and Materials\",\"volume\":\"73 1\",\"pages\":\"143 - 155\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HTM-Journal of Heat Treatment and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/htm-2022-1002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2022-1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Abstract Additive manufacturing of tool steels represents a great challenge, yet it offers new possibilities for the tool manufacture of, for example, complex forming tools with conformal cooling. First, this contribution gives an overview of the most relevant additive manufacturing processes, the materials and processing concepts. By means of a hybrid manufactured press hardening tool for high-strength sheet metal parts, an example of practical implementation is presented subsequently.