非侵入式上下文感知事务框架,以获得大数据的业务洞察力

Siva Chidambaram, P. Rubini, V. Sellam
{"title":"非侵入式上下文感知事务框架,以获得大数据的业务洞察力","authors":"Siva Chidambaram, P. Rubini, V. Sellam","doi":"10.4236/JSIP.2015.62007","DOIUrl":null,"url":null,"abstract":"To convert invisible, unstructured and time-sensitive machine data into information for decision making is a challenge. Tools available today handle only structured data. All the transaction data are getting captured without understanding its future relevance and usage. It leads to other big data analytics related issue in storing, archiving, processing, not bringing in relevant business insights to the business user. In this paper, we are proposing a context aware pattern methodology to filter relevant transaction data based on the preference of business.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"5 1","pages":"73-78"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Intrusive Context Aware Transactional Framework to Derive Business Insights on Big Data\",\"authors\":\"Siva Chidambaram, P. Rubini, V. Sellam\",\"doi\":\"10.4236/JSIP.2015.62007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To convert invisible, unstructured and time-sensitive machine data into information for decision making is a challenge. Tools available today handle only structured data. All the transaction data are getting captured without understanding its future relevance and usage. It leads to other big data analytics related issue in storing, archiving, processing, not bringing in relevant business insights to the business user. In this paper, we are proposing a context aware pattern methodology to filter relevant transaction data based on the preference of business.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"5 1\",\"pages\":\"73-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.62007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.62007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

将不可见、非结构化和时间敏感的机器数据转换为决策信息是一项挑战。目前可用的工具只能处理结构化数据。在不了解其未来的相关性和用途的情况下捕获所有事务数据。它会导致存储、归档、处理等大数据分析相关问题,无法为业务用户带来相关的业务见解。在本文中,我们提出了一种基于业务偏好的上下文感知模式方法来过滤相关交易数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Intrusive Context Aware Transactional Framework to Derive Business Insights on Big Data
To convert invisible, unstructured and time-sensitive machine data into information for decision making is a challenge. Tools available today handle only structured data. All the transaction data are getting captured without understanding its future relevance and usage. It leads to other big data analytics related issue in storing, archiving, processing, not bringing in relevant business insights to the business user. In this paper, we are proposing a context aware pattern methodology to filter relevant transaction data based on the preference of business.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Variational Mode Decomposition for Bearing Fault Detection White Blood Cells Detection Using Spectral Tresholding 3D Ergonomic Board: Kids Teaching and Learning Proposition Design and Evaluation of a Distributed Security Framework for the Internet of Things Improved Bearing Fault Diagnosis by Feature Extraction Based on GLCM, Fusion of Selection Methods, and Multiclass-Naïve Bayes Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1