Peyman Aligholizadeh Moghaddam, G. Ranjbar, Hammid Najafi-Zarrini, Hosein Shahbazi
{"title":"水分胁迫对部分面包小麦品种(Triticum aestivum)萌发及幼苗特性的影响","authors":"Peyman Aligholizadeh Moghaddam, G. Ranjbar, Hammid Najafi-Zarrini, Hosein Shahbazi","doi":"10.52547/yujs.7.2.151","DOIUrl":null,"url":null,"abstract":"Introduction: Germination is one of the most important stages of plant growth that determines the durability, establishment and final yield of crops and in regions that due to drought conditions the growth of plant encounters with problem, improving germination traits count as one of the important breeding strategies. The present study was designed to determine the effect of different levels of osmotic stress on germination and seedling traits of some bread wheat cultivars cultivated in cold regions of Iran. Materials and Methods: In order to investigate the effect of different levels of osmotic stress on germination characteristics of bread wheat cultivars cultivated in cold regions of Iran, a factorial experiment was conducted based on a completely randomized design with 3 replications in which, the first factor consisted of 20 bread wheat cultivars (including rain fed cultivars as well as end-of-season water stress tolerant varieties) and the second factor consisted of 3 levels of osmotic stress (non-stress, -3 and -6 bar stress). Seedling traits such as coleoptile length, shoot length, shoot weight, root length, root weight, root / shoot ratio, root growth angle, germination speed and the germination stress index (GSI) were evaluated. For the experiment concerning the yield comparison, 20 cultivars mentioned above were compared under non-stress and terminal drought stress conditions. Results: The results showed that the ratio of root/shoot length and weight and shoot weight had the highest sensitivity and the lowest number of roots to osmotic stress. Increasing root length as root weight decreased with increasing stress showed that roots became longer and thinner due to stress. Among the genotypes, Saein, Zare, Pishgam, Sadra, Baran and Mihan had desirable traits and CrossMV17, Homa, Orum and Cross Azar2 had no desirable germination traits. In non-stress conditions, 11 genotypes had high coleoptile length including Hashtrood, Azar 2, Saein, CD62-6, CD91-12, Mihan, Baran, Heydari, Homa, Cross Azar 2 and Zare genotypes. At 3 bar stress, 11 genotypes had the highest coleoptile length, with the highest values being assigned to Hashtrood, Heidari and Saein. At 6 bar stress, CD91-12 and CD62-6 lines, Hashtrood, Homa, Pishgam, and Zare had the highest coleoptile length. At 3 bar stress cross Azar 2, Saein, CD62-6, Gascogen and HD2985 demonstrated the highest germination rate. Furthermore, Cross Azar2, HD2985, Gascogen, CD62-6 and Saein led to the best results, respectively. However, in both 3 and 6 bar stress conditions Saein, Cross Azar2, CD62-6 and HD2985 were superior for germination stress index (GSI). For grain yield under normal conditions, Gascogen, Heidari, Pishgam, Orum and Zarrineh had the highest yield and Baran, HD2985, C-88-4, C-9011 and Cross Azar2 were placed next. comprising 13 genotypes Heidari, Mihan, HD2985, Baran, Pishgam, Hashtrood, Cross Azar 2, CD62-6, Gascogen, Azar 2, Saein, Sadra and Zare. The second cluster consisted of 7 genotypes C-88-4, Zarineh, C-90-11, Orum, CD91-12, CrossMV17 and Homa. Genotypes of cluster 1 were superior in terms of germination traits such as shoot length, coleoptile length, root length and root weight and reduced root/shoot ratio. Conclusion: Significant differences in all studied traits among genotypes indicated sufficient genetic variation for selection in germination traits. Results showed that Saein, Zare, Pishgam, Sadra, Baran and Mihan cultivars had desirable germination traits and were superior to other genotypes .","PeriodicalId":14578,"journal":{"name":"Iranian Journal of Seed Research","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Water Stress on Germination and Seedling Characteristics of Some bread Wheat Cultivars (Triticum aestivum)\",\"authors\":\"Peyman Aligholizadeh Moghaddam, G. Ranjbar, Hammid Najafi-Zarrini, Hosein Shahbazi\",\"doi\":\"10.52547/yujs.7.2.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Germination is one of the most important stages of plant growth that determines the durability, establishment and final yield of crops and in regions that due to drought conditions the growth of plant encounters with problem, improving germination traits count as one of the important breeding strategies. The present study was designed to determine the effect of different levels of osmotic stress on germination and seedling traits of some bread wheat cultivars cultivated in cold regions of Iran. Materials and Methods: In order to investigate the effect of different levels of osmotic stress on germination characteristics of bread wheat cultivars cultivated in cold regions of Iran, a factorial experiment was conducted based on a completely randomized design with 3 replications in which, the first factor consisted of 20 bread wheat cultivars (including rain fed cultivars as well as end-of-season water stress tolerant varieties) and the second factor consisted of 3 levels of osmotic stress (non-stress, -3 and -6 bar stress). Seedling traits such as coleoptile length, shoot length, shoot weight, root length, root weight, root / shoot ratio, root growth angle, germination speed and the germination stress index (GSI) were evaluated. For the experiment concerning the yield comparison, 20 cultivars mentioned above were compared under non-stress and terminal drought stress conditions. Results: The results showed that the ratio of root/shoot length and weight and shoot weight had the highest sensitivity and the lowest number of roots to osmotic stress. Increasing root length as root weight decreased with increasing stress showed that roots became longer and thinner due to stress. Among the genotypes, Saein, Zare, Pishgam, Sadra, Baran and Mihan had desirable traits and CrossMV17, Homa, Orum and Cross Azar2 had no desirable germination traits. In non-stress conditions, 11 genotypes had high coleoptile length including Hashtrood, Azar 2, Saein, CD62-6, CD91-12, Mihan, Baran, Heydari, Homa, Cross Azar 2 and Zare genotypes. At 3 bar stress, 11 genotypes had the highest coleoptile length, with the highest values being assigned to Hashtrood, Heidari and Saein. At 6 bar stress, CD91-12 and CD62-6 lines, Hashtrood, Homa, Pishgam, and Zare had the highest coleoptile length. At 3 bar stress cross Azar 2, Saein, CD62-6, Gascogen and HD2985 demonstrated the highest germination rate. Furthermore, Cross Azar2, HD2985, Gascogen, CD62-6 and Saein led to the best results, respectively. However, in both 3 and 6 bar stress conditions Saein, Cross Azar2, CD62-6 and HD2985 were superior for germination stress index (GSI). For grain yield under normal conditions, Gascogen, Heidari, Pishgam, Orum and Zarrineh had the highest yield and Baran, HD2985, C-88-4, C-9011 and Cross Azar2 were placed next. comprising 13 genotypes Heidari, Mihan, HD2985, Baran, Pishgam, Hashtrood, Cross Azar 2, CD62-6, Gascogen, Azar 2, Saein, Sadra and Zare. The second cluster consisted of 7 genotypes C-88-4, Zarineh, C-90-11, Orum, CD91-12, CrossMV17 and Homa. Genotypes of cluster 1 were superior in terms of germination traits such as shoot length, coleoptile length, root length and root weight and reduced root/shoot ratio. Conclusion: Significant differences in all studied traits among genotypes indicated sufficient genetic variation for selection in germination traits. Results showed that Saein, Zare, Pishgam, Sadra, Baran and Mihan cultivars had desirable germination traits and were superior to other genotypes .\",\"PeriodicalId\":14578,\"journal\":{\"name\":\"Iranian Journal of Seed Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Seed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/yujs.7.2.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Seed Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/yujs.7.2.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Water Stress on Germination and Seedling Characteristics of Some bread Wheat Cultivars (Triticum aestivum)
Introduction: Germination is one of the most important stages of plant growth that determines the durability, establishment and final yield of crops and in regions that due to drought conditions the growth of plant encounters with problem, improving germination traits count as one of the important breeding strategies. The present study was designed to determine the effect of different levels of osmotic stress on germination and seedling traits of some bread wheat cultivars cultivated in cold regions of Iran. Materials and Methods: In order to investigate the effect of different levels of osmotic stress on germination characteristics of bread wheat cultivars cultivated in cold regions of Iran, a factorial experiment was conducted based on a completely randomized design with 3 replications in which, the first factor consisted of 20 bread wheat cultivars (including rain fed cultivars as well as end-of-season water stress tolerant varieties) and the second factor consisted of 3 levels of osmotic stress (non-stress, -3 and -6 bar stress). Seedling traits such as coleoptile length, shoot length, shoot weight, root length, root weight, root / shoot ratio, root growth angle, germination speed and the germination stress index (GSI) were evaluated. For the experiment concerning the yield comparison, 20 cultivars mentioned above were compared under non-stress and terminal drought stress conditions. Results: The results showed that the ratio of root/shoot length and weight and shoot weight had the highest sensitivity and the lowest number of roots to osmotic stress. Increasing root length as root weight decreased with increasing stress showed that roots became longer and thinner due to stress. Among the genotypes, Saein, Zare, Pishgam, Sadra, Baran and Mihan had desirable traits and CrossMV17, Homa, Orum and Cross Azar2 had no desirable germination traits. In non-stress conditions, 11 genotypes had high coleoptile length including Hashtrood, Azar 2, Saein, CD62-6, CD91-12, Mihan, Baran, Heydari, Homa, Cross Azar 2 and Zare genotypes. At 3 bar stress, 11 genotypes had the highest coleoptile length, with the highest values being assigned to Hashtrood, Heidari and Saein. At 6 bar stress, CD91-12 and CD62-6 lines, Hashtrood, Homa, Pishgam, and Zare had the highest coleoptile length. At 3 bar stress cross Azar 2, Saein, CD62-6, Gascogen and HD2985 demonstrated the highest germination rate. Furthermore, Cross Azar2, HD2985, Gascogen, CD62-6 and Saein led to the best results, respectively. However, in both 3 and 6 bar stress conditions Saein, Cross Azar2, CD62-6 and HD2985 were superior for germination stress index (GSI). For grain yield under normal conditions, Gascogen, Heidari, Pishgam, Orum and Zarrineh had the highest yield and Baran, HD2985, C-88-4, C-9011 and Cross Azar2 were placed next. comprising 13 genotypes Heidari, Mihan, HD2985, Baran, Pishgam, Hashtrood, Cross Azar 2, CD62-6, Gascogen, Azar 2, Saein, Sadra and Zare. The second cluster consisted of 7 genotypes C-88-4, Zarineh, C-90-11, Orum, CD91-12, CrossMV17 and Homa. Genotypes of cluster 1 were superior in terms of germination traits such as shoot length, coleoptile length, root length and root weight and reduced root/shoot ratio. Conclusion: Significant differences in all studied traits among genotypes indicated sufficient genetic variation for selection in germination traits. Results showed that Saein, Zare, Pishgam, Sadra, Baran and Mihan cultivars had desirable germination traits and were superior to other genotypes .