{"title":"臭氧氧化法去除制药废水中的二乙烯三胺五乙酸","authors":"Fares Daoud, S. Zühlke, M. Spiteller, O. Kayser","doi":"10.1080/01919512.2021.1983409","DOIUrl":null,"url":null,"abstract":"ABSTRACT During production of diethylenetriaminepentaacetic acid (DTPA), process waste water is generated in several production stages. Process wastewater is usually disposed of via waste water treatment plants. However, due to low biodegradability of DTPA in conventional waste water treatment, incineration constitutes the current method of choice. The main disadvantage of incineration is high consumption of primary energy sources leading to substantial emission of carbon dioxide (CO2). Thus, an alternative method of process waste water treatment was investigated, which consists of an initial application of ozone and a subsequent biological treatment. In 2009, preliminary laboratory experiments were conducted to evaluate the elimination of DTPA in process waste water. Based on the initial results, the responsible authorities granted approval for large-scale ozonation of DTPA-containing wastewater in 2011. Additional laboratory scale experiments were carried out to assess the elimination of the target compound and the generation of its main transformation products using liquid chromatography – high resolution mass spectrometry. Through application of the postulated method, the concentration of DTPA and its derivatives can be reduced to levels assuring safe discharge into the receiving water. Additionally, a comparison of CO2 emissions showed that ozonation is an ecological alternative to incineration and, most likely, an economical as well, based on the local prices of primary energy sources.","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":"90 1","pages":"473 - 485"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination of Diethylenetriaminepentaacetic Acid from Effluents from Pharmaceutical Production by Ozonation\",\"authors\":\"Fares Daoud, S. Zühlke, M. Spiteller, O. Kayser\",\"doi\":\"10.1080/01919512.2021.1983409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT During production of diethylenetriaminepentaacetic acid (DTPA), process waste water is generated in several production stages. Process wastewater is usually disposed of via waste water treatment plants. However, due to low biodegradability of DTPA in conventional waste water treatment, incineration constitutes the current method of choice. The main disadvantage of incineration is high consumption of primary energy sources leading to substantial emission of carbon dioxide (CO2). Thus, an alternative method of process waste water treatment was investigated, which consists of an initial application of ozone and a subsequent biological treatment. In 2009, preliminary laboratory experiments were conducted to evaluate the elimination of DTPA in process waste water. Based on the initial results, the responsible authorities granted approval for large-scale ozonation of DTPA-containing wastewater in 2011. Additional laboratory scale experiments were carried out to assess the elimination of the target compound and the generation of its main transformation products using liquid chromatography – high resolution mass spectrometry. Through application of the postulated method, the concentration of DTPA and its derivatives can be reduced to levels assuring safe discharge into the receiving water. Additionally, a comparison of CO2 emissions showed that ozonation is an ecological alternative to incineration and, most likely, an economical as well, based on the local prices of primary energy sources.\",\"PeriodicalId\":19580,\"journal\":{\"name\":\"Ozone: Science & Engineering\",\"volume\":\"90 1\",\"pages\":\"473 - 485\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ozone: Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/01919512.2021.1983409\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2021.1983409","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Elimination of Diethylenetriaminepentaacetic Acid from Effluents from Pharmaceutical Production by Ozonation
ABSTRACT During production of diethylenetriaminepentaacetic acid (DTPA), process waste water is generated in several production stages. Process wastewater is usually disposed of via waste water treatment plants. However, due to low biodegradability of DTPA in conventional waste water treatment, incineration constitutes the current method of choice. The main disadvantage of incineration is high consumption of primary energy sources leading to substantial emission of carbon dioxide (CO2). Thus, an alternative method of process waste water treatment was investigated, which consists of an initial application of ozone and a subsequent biological treatment. In 2009, preliminary laboratory experiments were conducted to evaluate the elimination of DTPA in process waste water. Based on the initial results, the responsible authorities granted approval for large-scale ozonation of DTPA-containing wastewater in 2011. Additional laboratory scale experiments were carried out to assess the elimination of the target compound and the generation of its main transformation products using liquid chromatography – high resolution mass spectrometry. Through application of the postulated method, the concentration of DTPA and its derivatives can be reduced to levels assuring safe discharge into the receiving water. Additionally, a comparison of CO2 emissions showed that ozonation is an ecological alternative to incineration and, most likely, an economical as well, based on the local prices of primary energy sources.
期刊介绍:
The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including:
-Ozone generation and contacting-
Treatment of drinking water-
Analysis of ozone in gases and liquids-
Treatment of wastewater and hazardous waste-
Advanced oxidation processes-
Treatment of emerging contaminants-
Agri-Food applications-
Process control of ozone systems-
New applications for ozone (e.g. laundry applications, semiconductor applications)-
Chemical synthesis.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.