{"title":"设计具有各向异性形态和力学性能的粘弹性明胶-聚乙二醇大孔杂化水凝胶用于组织工程","authors":"K. Dey, S. Agnelli, L. Sartore","doi":"10.3390/micro3020029","DOIUrl":null,"url":null,"abstract":"The mechanical properties of scaffolds play a vital role in regulating key cellular processes in tissue development and regeneration in the field of tissue engineering. Recently, scaffolding material design strategies leverage viscoelasticity to guide stem cells toward specific tissue regeneration. Herein, we designed and developed a viscoelastic Gel-PEG hybrid hydrogel with anisotropic morphology and mechanical properties using a gelatin and functionalized PEG (as a crosslinker) under a benign condition for tissue engineering application. The chemical crosslinking/grafting reaction was mainly involved between epoxide groups of PEG and available functional groups of gelatin. FTIR spectra revealed the hybrid nature of Gel-PEG hydrogel. The hybrid hydrogel showed good swelling behavior (water content > 600%), high porosity and pore interconnectivity suitable for tissue engineering application. Simple unidirectional freezing followed by a freeze-drying technique allowed the creation of structurally stable 3D anisotropic macroporous architecture that showed tissue-like elasticity and was capable of withstanding high deformation (50% strain) without being damaged. The tensile and compressive modulus of Gel-PEG hybrid hydrogel were found to be 0.863 MPa and 0.330 MPa, respectively, which are within the range of normal human articular cartilage. In-depth mechanical characterizations showed that the Gel-PEG hybrid hydrogel possessed natural-tissue-like mechanics such as non-linear and J-shaped stress-strain curves, stress softening effect, high fatigue resistance and stress relaxation response. A month-long hydrolytic degradation test revealed that the hydrogel gradually degraded in a homogeneous manner over time but maintained its structural stability and anisotropic mechanics. Overall, all these interesting features provide a potential opportunity for Gel-PEG hybrid hydrogel as a scaffold in a wide range of tissue engineering applications.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing Viscoelastic Gelatin-PEG Macroporous Hybrid Hydrogel with Anisotropic Morphology and Mechanical Properties for Tissue Engineering Application\",\"authors\":\"K. Dey, S. Agnelli, L. Sartore\",\"doi\":\"10.3390/micro3020029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical properties of scaffolds play a vital role in regulating key cellular processes in tissue development and regeneration in the field of tissue engineering. Recently, scaffolding material design strategies leverage viscoelasticity to guide stem cells toward specific tissue regeneration. Herein, we designed and developed a viscoelastic Gel-PEG hybrid hydrogel with anisotropic morphology and mechanical properties using a gelatin and functionalized PEG (as a crosslinker) under a benign condition for tissue engineering application. The chemical crosslinking/grafting reaction was mainly involved between epoxide groups of PEG and available functional groups of gelatin. FTIR spectra revealed the hybrid nature of Gel-PEG hydrogel. The hybrid hydrogel showed good swelling behavior (water content > 600%), high porosity and pore interconnectivity suitable for tissue engineering application. Simple unidirectional freezing followed by a freeze-drying technique allowed the creation of structurally stable 3D anisotropic macroporous architecture that showed tissue-like elasticity and was capable of withstanding high deformation (50% strain) without being damaged. The tensile and compressive modulus of Gel-PEG hybrid hydrogel were found to be 0.863 MPa and 0.330 MPa, respectively, which are within the range of normal human articular cartilage. In-depth mechanical characterizations showed that the Gel-PEG hybrid hydrogel possessed natural-tissue-like mechanics such as non-linear and J-shaped stress-strain curves, stress softening effect, high fatigue resistance and stress relaxation response. A month-long hydrolytic degradation test revealed that the hydrogel gradually degraded in a homogeneous manner over time but maintained its structural stability and anisotropic mechanics. Overall, all these interesting features provide a potential opportunity for Gel-PEG hybrid hydrogel as a scaffold in a wide range of tissue engineering applications.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3020029\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020029","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing Viscoelastic Gelatin-PEG Macroporous Hybrid Hydrogel with Anisotropic Morphology and Mechanical Properties for Tissue Engineering Application
The mechanical properties of scaffolds play a vital role in regulating key cellular processes in tissue development and regeneration in the field of tissue engineering. Recently, scaffolding material design strategies leverage viscoelasticity to guide stem cells toward specific tissue regeneration. Herein, we designed and developed a viscoelastic Gel-PEG hybrid hydrogel with anisotropic morphology and mechanical properties using a gelatin and functionalized PEG (as a crosslinker) under a benign condition for tissue engineering application. The chemical crosslinking/grafting reaction was mainly involved between epoxide groups of PEG and available functional groups of gelatin. FTIR spectra revealed the hybrid nature of Gel-PEG hydrogel. The hybrid hydrogel showed good swelling behavior (water content > 600%), high porosity and pore interconnectivity suitable for tissue engineering application. Simple unidirectional freezing followed by a freeze-drying technique allowed the creation of structurally stable 3D anisotropic macroporous architecture that showed tissue-like elasticity and was capable of withstanding high deformation (50% strain) without being damaged. The tensile and compressive modulus of Gel-PEG hybrid hydrogel were found to be 0.863 MPa and 0.330 MPa, respectively, which are within the range of normal human articular cartilage. In-depth mechanical characterizations showed that the Gel-PEG hybrid hydrogel possessed natural-tissue-like mechanics such as non-linear and J-shaped stress-strain curves, stress softening effect, high fatigue resistance and stress relaxation response. A month-long hydrolytic degradation test revealed that the hydrogel gradually degraded in a homogeneous manner over time but maintained its structural stability and anisotropic mechanics. Overall, all these interesting features provide a potential opportunity for Gel-PEG hybrid hydrogel as a scaffold in a wide range of tissue engineering applications.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics