基于机器学习技术的薄壁加劲结构反设计方法

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE Aerospace America Pub Date : 2023-08-28 DOI:10.3390/aerospace10090761
Yongtao Lyu, Yibiao Niu, Tao He, Limin Shu, Michael Zhuravkov, Shutao Zhou
{"title":"基于机器学习技术的薄壁加劲结构反设计方法","authors":"Yongtao Lyu, Yibiao Niu, Tao He, Limin Shu, Michael Zhuravkov, Shutao Zhou","doi":"10.3390/aerospace10090761","DOIUrl":null,"url":null,"abstract":"In this paper, a new method using the backpropagation (BP) neural network combined with the improved genetic algorithm (GA) is proposed for the inverse design of thin-walled reinforced structures. The BP neural network model is used to establish the mapping relationship between the input parameters (reinforcement type, rib height, rib width, skin thickness and rib number) and the output parameters (structural buckling load). A genetic algorithm is added to obtain the inversely designed result of a thin-wall stiffened structure according to the actual demand. In the end, according to the geometric parameters of inverse design, the thin-walled stiffened structure is reconstructed geometrically, and the numerical solutions of finite element calculation are compared with the target values of actual demand. The results show that the maximal inversely designed error is within 5.1%, which implies that the inverse design method of structural geometric parameters based on the machine learning and genetic algorithm is efficient and feasible.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"35 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Method for the Inverse Design of Thin-Wall Stiffened Structure Based on the Machine Learning Technique\",\"authors\":\"Yongtao Lyu, Yibiao Niu, Tao He, Limin Shu, Michael Zhuravkov, Shutao Zhou\",\"doi\":\"10.3390/aerospace10090761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method using the backpropagation (BP) neural network combined with the improved genetic algorithm (GA) is proposed for the inverse design of thin-walled reinforced structures. The BP neural network model is used to establish the mapping relationship between the input parameters (reinforcement type, rib height, rib width, skin thickness and rib number) and the output parameters (structural buckling load). A genetic algorithm is added to obtain the inversely designed result of a thin-wall stiffened structure according to the actual demand. In the end, according to the geometric parameters of inverse design, the thin-walled stiffened structure is reconstructed geometrically, and the numerical solutions of finite element calculation are compared with the target values of actual demand. The results show that the maximal inversely designed error is within 5.1%, which implies that the inverse design method of structural geometric parameters based on the machine learning and genetic algorithm is efficient and feasible.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090761\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将BP神经网络与改进遗传算法相结合的薄壁钢筋结构反设计新方法。采用BP神经网络模型建立输入参数(配筋类型、筋高、筋宽、蒙皮厚度、筋数)与输出参数(结构屈曲载荷)之间的映射关系。根据实际需求,采用遗传算法对薄壁加筋结构进行反设计,得到反设计结果。最后,根据反设计的几何参数,对薄壁加筋结构进行几何重构,并将有限元计算的数值解与实际需求目标值进行比较。结果表明,最大反设计误差在5.1%以内,表明基于机器学习和遗传算法的结构几何参数反设计方法是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Method for the Inverse Design of Thin-Wall Stiffened Structure Based on the Machine Learning Technique
In this paper, a new method using the backpropagation (BP) neural network combined with the improved genetic algorithm (GA) is proposed for the inverse design of thin-walled reinforced structures. The BP neural network model is used to establish the mapping relationship between the input parameters (reinforcement type, rib height, rib width, skin thickness and rib number) and the output parameters (structural buckling load). A genetic algorithm is added to obtain the inversely designed result of a thin-wall stiffened structure according to the actual demand. In the end, according to the geometric parameters of inverse design, the thin-walled stiffened structure is reconstructed geometrically, and the numerical solutions of finite element calculation are compared with the target values of actual demand. The results show that the maximal inversely designed error is within 5.1%, which implies that the inverse design method of structural geometric parameters based on the machine learning and genetic algorithm is efficient and feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
期刊最新文献
A Novel Digital Twin Framework for Aeroengine Performance Diagnosis GPU Acceleration of CFD Simulations in OpenFOAM Recent Advances in Airfoil Self-Noise Passive Reduction Characteristics of Vortices around Forward Swept Wing at Low Speeds/High Angles of Attack A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1