了解电路级不准确性对传感器网络性能的影响

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc & Sensor Wireless Networks Pub Date : 2018-10-25 DOI:10.1145/3243046.3243062
Paul Detterer, Cumhur Erdin, Majid Nabi, T. Basten, Hailong Jiao
{"title":"了解电路级不准确性对传感器网络性能的影响","authors":"Paul Detterer, Cumhur Erdin, Majid Nabi, T. Basten, Hailong Jiao","doi":"10.1145/3243046.3243062","DOIUrl":null,"url":null,"abstract":"Energy efficiency is of paramount importance in designing lowpower wireless sensor nodes. Approximate computing is a new circuit-level technique for reducing power consumption. However, the gain in power by applying this technique is achieved at the cost of computational errors. The impact of such inaccuracies in the circuit level of a radio transceiver chip on the performance of Wireless Sensor Networks (WSNs) has not yet been explored. The applicability of such low-power chip design techniques depends on the overall energy gain and their impact on the network performance. In this paper, we analyze various inaccuracy fields in a radio chip, and quantify their impact on the network performance, in terms of packet latency, goodput, and energy per bit. The analysis is supported by extensive network simulations. The outcome can be used to investigate in which WSN application scenarios such power reduction techniques at circuit level can be applied, given the network performance and energy consumption requirements.","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":"36 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Understanding the Impact of Circuit-Level Inaccuracy on Sensor Network Performance\",\"authors\":\"Paul Detterer, Cumhur Erdin, Majid Nabi, T. Basten, Hailong Jiao\",\"doi\":\"10.1145/3243046.3243062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is of paramount importance in designing lowpower wireless sensor nodes. Approximate computing is a new circuit-level technique for reducing power consumption. However, the gain in power by applying this technique is achieved at the cost of computational errors. The impact of such inaccuracies in the circuit level of a radio transceiver chip on the performance of Wireless Sensor Networks (WSNs) has not yet been explored. The applicability of such low-power chip design techniques depends on the overall energy gain and their impact on the network performance. In this paper, we analyze various inaccuracy fields in a radio chip, and quantify their impact on the network performance, in terms of packet latency, goodput, and energy per bit. The analysis is supported by extensive network simulations. The outcome can be used to investigate in which WSN application scenarios such power reduction techniques at circuit level can be applied, given the network performance and energy consumption requirements.\",\"PeriodicalId\":55557,\"journal\":{\"name\":\"Ad Hoc & Sensor Wireless Networks\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc & Sensor Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3243046.3243062\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3243046.3243062","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

在设计低功耗无线传感器节点时,能效是至关重要的。近似计算是一种新的降低功耗的电路级技术。然而,通过应用这种技术获得的功率增益是以计算误差为代价的。无线电收发芯片电路级的这种不准确性对无线传感器网络(WSNs)性能的影响尚未得到探讨。这种低功耗芯片设计技术的适用性取决于总体能量增益及其对网络性能的影响。在本文中,我们分析了无线电芯片中的各种不准确字段,并量化了它们对网络性能的影响,包括数据包延迟、goodput和每比特能量。该分析得到了大量网络模拟的支持。该结果可用于研究在给定网络性能和能耗要求的情况下,在电路级可以应用诸如功耗降低技术之类的WSN应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the Impact of Circuit-Level Inaccuracy on Sensor Network Performance
Energy efficiency is of paramount importance in designing lowpower wireless sensor nodes. Approximate computing is a new circuit-level technique for reducing power consumption. However, the gain in power by applying this technique is achieved at the cost of computational errors. The impact of such inaccuracies in the circuit level of a radio transceiver chip on the performance of Wireless Sensor Networks (WSNs) has not yet been explored. The applicability of such low-power chip design techniques depends on the overall energy gain and their impact on the network performance. In this paper, we analyze various inaccuracy fields in a radio chip, and quantify their impact on the network performance, in terms of packet latency, goodput, and energy per bit. The analysis is supported by extensive network simulations. The outcome can be used to investigate in which WSN application scenarios such power reduction techniques at circuit level can be applied, given the network performance and energy consumption requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc & Sensor Wireless Networks
Ad Hoc & Sensor Wireless Networks 工程技术-电信学
CiteScore
2.00
自引率
44.40%
发文量
0
审稿时长
8 months
期刊介绍: Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.
期刊最新文献
Enumeration of the Number of Spanning Trees of the Globe Network and its Subdivision A HYBRID OPTIMIZATION ALGORITHMS FOR SOLVING METRIC DIMENSION PROBLEM Detecting Malicious Use of DoH Tunnels Using Statistical Traffic Analysis RPL+: An Improved Parent Selection Strategy for RPL in Wireless Smart Grid Networks Prototype of deployment of Federated Learning with IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1