Li Jia-tong, Lin Yong-sheng, Shan Qing, He Da-qian, Zhao Dan, Jia Wen-bao
{"title":"辐照处理水溶液中的苯胺","authors":"Li Jia-tong, Lin Yong-sheng, Shan Qing, He Da-qian, Zhao Dan, Jia Wen-bao","doi":"10.1515/jaots-2016-0173","DOIUrl":null,"url":null,"abstract":"Abstract A laboratory investigation of the radiation-induced degradation of aniline by gamma irradiation is the subject of this paper. During the inquiry, several aqueous samples with aniline concentrations of 25, 50, 75, 100 and 200 mg/L were irradiated for 5, 10, 15, 20, 25 and 30 h, respectively, by a 60Co source with an absorbed dose rate of 0.78 kGy/h at the core channel. After the testing, the project authors scrutinized the aqueous samples to determine the effects of their irradiation by analyzing the pH, the hydroxyl radical and the H2O2 of the individual initial concentrations. The findings showed that gamma irradiation is effective in removing aniline from aqueous solutions and, in the process, tends to remove the chemical oxygen demand (COD). Among other findings, the tests revealed that at a 25 mg/L aniline concentration, up to 100 % removal is possible after only 5 h of exposure. The authors explained that kinetic studies have shown that the degradation of aniline follows a pseudo first-order reaction. They have also shown that pH plays a significant role in aniline-removal efficiency. The tests in this study revealed that with a dose of 7.8 kGy, the removal efficiency of COD in an alkaline environment is higher than that of an acidic environment. With the absorbed dose increases, the authors learned that an acidic environment is helpful for the removal efficiency of COD. They also found that by adding 50 g/L of sodium bicarbonate as the hydroxyl radical scavenger, there was an 8 % decrease in the removal efficiency of COD at the absorbed dose of 23.4 kGy. This indicates the importance of using a hydroxyl radical in the gamma irradiation process. Also, a 1 g/L H2O2 addition increases the COD removal rate from 31 % to 55 %. This percentage-point jump shows a synergistic effect in the use of gamma irradiation. The authors also identified several major decomposition products by GC/MS which are useful in the radiation-induced degradation of aniline by gamma irradiation process. Finally, they present proposals of possible pathways for successful aniline decomposition.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The treatment of aniline in aqueous solutions by gamma irradiation\",\"authors\":\"Li Jia-tong, Lin Yong-sheng, Shan Qing, He Da-qian, Zhao Dan, Jia Wen-bao\",\"doi\":\"10.1515/jaots-2016-0173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A laboratory investigation of the radiation-induced degradation of aniline by gamma irradiation is the subject of this paper. During the inquiry, several aqueous samples with aniline concentrations of 25, 50, 75, 100 and 200 mg/L were irradiated for 5, 10, 15, 20, 25 and 30 h, respectively, by a 60Co source with an absorbed dose rate of 0.78 kGy/h at the core channel. After the testing, the project authors scrutinized the aqueous samples to determine the effects of their irradiation by analyzing the pH, the hydroxyl radical and the H2O2 of the individual initial concentrations. The findings showed that gamma irradiation is effective in removing aniline from aqueous solutions and, in the process, tends to remove the chemical oxygen demand (COD). Among other findings, the tests revealed that at a 25 mg/L aniline concentration, up to 100 % removal is possible after only 5 h of exposure. The authors explained that kinetic studies have shown that the degradation of aniline follows a pseudo first-order reaction. They have also shown that pH plays a significant role in aniline-removal efficiency. The tests in this study revealed that with a dose of 7.8 kGy, the removal efficiency of COD in an alkaline environment is higher than that of an acidic environment. With the absorbed dose increases, the authors learned that an acidic environment is helpful for the removal efficiency of COD. They also found that by adding 50 g/L of sodium bicarbonate as the hydroxyl radical scavenger, there was an 8 % decrease in the removal efficiency of COD at the absorbed dose of 23.4 kGy. This indicates the importance of using a hydroxyl radical in the gamma irradiation process. Also, a 1 g/L H2O2 addition increases the COD removal rate from 31 % to 55 %. This percentage-point jump shows a synergistic effect in the use of gamma irradiation. The authors also identified several major decomposition products by GC/MS which are useful in the radiation-induced degradation of aniline by gamma irradiation process. Finally, they present proposals of possible pathways for successful aniline decomposition.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
The treatment of aniline in aqueous solutions by gamma irradiation
Abstract A laboratory investigation of the radiation-induced degradation of aniline by gamma irradiation is the subject of this paper. During the inquiry, several aqueous samples with aniline concentrations of 25, 50, 75, 100 and 200 mg/L were irradiated for 5, 10, 15, 20, 25 and 30 h, respectively, by a 60Co source with an absorbed dose rate of 0.78 kGy/h at the core channel. After the testing, the project authors scrutinized the aqueous samples to determine the effects of their irradiation by analyzing the pH, the hydroxyl radical and the H2O2 of the individual initial concentrations. The findings showed that gamma irradiation is effective in removing aniline from aqueous solutions and, in the process, tends to remove the chemical oxygen demand (COD). Among other findings, the tests revealed that at a 25 mg/L aniline concentration, up to 100 % removal is possible after only 5 h of exposure. The authors explained that kinetic studies have shown that the degradation of aniline follows a pseudo first-order reaction. They have also shown that pH plays a significant role in aniline-removal efficiency. The tests in this study revealed that with a dose of 7.8 kGy, the removal efficiency of COD in an alkaline environment is higher than that of an acidic environment. With the absorbed dose increases, the authors learned that an acidic environment is helpful for the removal efficiency of COD. They also found that by adding 50 g/L of sodium bicarbonate as the hydroxyl radical scavenger, there was an 8 % decrease in the removal efficiency of COD at the absorbed dose of 23.4 kGy. This indicates the importance of using a hydroxyl radical in the gamma irradiation process. Also, a 1 g/L H2O2 addition increases the COD removal rate from 31 % to 55 %. This percentage-point jump shows a synergistic effect in the use of gamma irradiation. The authors also identified several major decomposition products by GC/MS which are useful in the radiation-induced degradation of aniline by gamma irradiation process. Finally, they present proposals of possible pathways for successful aniline decomposition.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs