Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, Guoren Wang
{"title":"云平台上高效、安全、可验证的k近邻查询方法*","authors":"Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, Guoren Wang","doi":"10.1109/ICDE48307.2020.00029","DOIUrl":null,"url":null,"abstract":"With the boom in cloud computing, data outsourcing in location-based services is proliferating and has attracted increasing interest from research communities and commercial applications. Nevertheless, since the cloud server is probably both untrusted and malicious, concerns of data security and result integrity have become on the rise sharply. However, there exist little work that can commendably assure the data security and result integrity using a unified way. In this paper, we study the problem of secure and verifiable k nearest neighbor query (SVkNN). To support SVkNN, we first propose a novel unified structure, called verifiable and secure index (VSI). Based on this, we devise a series of secure protocols to facilitate query processing and develop a compact verification strategy. Given an SVkNN query, our proposed solution can not merely answer the query efficiently while can guarantee: 1) preserving the privacy of data, query, result and access patterns; 2) authenticating the correctness and completeness of the results without leaking the confidentiality. Finally, the formal security analysis and complexity analysis are theoretically proven and the performance and feasibility of our proposed approaches are empirically evaluated and demonstrated.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"7 1","pages":"253-264"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"SVkNN: Efficient Secure and Verifiable k-Nearest Neighbor Query on the Cloud Platform*\",\"authors\":\"Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, Guoren Wang\",\"doi\":\"10.1109/ICDE48307.2020.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the boom in cloud computing, data outsourcing in location-based services is proliferating and has attracted increasing interest from research communities and commercial applications. Nevertheless, since the cloud server is probably both untrusted and malicious, concerns of data security and result integrity have become on the rise sharply. However, there exist little work that can commendably assure the data security and result integrity using a unified way. In this paper, we study the problem of secure and verifiable k nearest neighbor query (SVkNN). To support SVkNN, we first propose a novel unified structure, called verifiable and secure index (VSI). Based on this, we devise a series of secure protocols to facilitate query processing and develop a compact verification strategy. Given an SVkNN query, our proposed solution can not merely answer the query efficiently while can guarantee: 1) preserving the privacy of data, query, result and access patterns; 2) authenticating the correctness and completeness of the results without leaking the confidentiality. Finally, the formal security analysis and complexity analysis are theoretically proven and the performance and feasibility of our proposed approaches are empirically evaluated and demonstrated.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"7 1\",\"pages\":\"253-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SVkNN: Efficient Secure and Verifiable k-Nearest Neighbor Query on the Cloud Platform*
With the boom in cloud computing, data outsourcing in location-based services is proliferating and has attracted increasing interest from research communities and commercial applications. Nevertheless, since the cloud server is probably both untrusted and malicious, concerns of data security and result integrity have become on the rise sharply. However, there exist little work that can commendably assure the data security and result integrity using a unified way. In this paper, we study the problem of secure and verifiable k nearest neighbor query (SVkNN). To support SVkNN, we first propose a novel unified structure, called verifiable and secure index (VSI). Based on this, we devise a series of secure protocols to facilitate query processing and develop a compact verification strategy. Given an SVkNN query, our proposed solution can not merely answer the query efficiently while can guarantee: 1) preserving the privacy of data, query, result and access patterns; 2) authenticating the correctness and completeness of the results without leaking the confidentiality. Finally, the formal security analysis and complexity analysis are theoretically proven and the performance and feasibility of our proposed approaches are empirically evaluated and demonstrated.