A. Pala, A. Ederoclite, N. G. Fusillo, H. V. Ramió, R. Raddi, J. Abril, B. Gänsicke, A. Rebassa-Mansergas
{"title":"检验CV演化模型","authors":"A. Pala, A. Ederoclite, N. G. Fusillo, H. V. Ramió, R. Raddi, J. Abril, B. Gänsicke, A. Rebassa-Mansergas","doi":"10.22323/1.315.0042","DOIUrl":null,"url":null,"abstract":"The study of Cataclysmic Variables (CVs) is crucial to test our understanding of binary evolution and its application to many astrophysical phenomena, such as short gamma-ray bursts, X-ray transients and, more important, Supernovae Ia, our yardsticks for measuring distances. Yet, the predicted major component of the present-day CV population, the so-called \"period bouncers\" (CVs containing a white dwarf and a degenerate donor), has not been detected, highlighting a major discrepancy between theory and observations. \nWe present here CHiCaS, the Compact binary HIgh CAdence Survey, which will perform three hours of uninterrupted time series photometry over 136 square degrees of the sky with JAST/T80Cam. By the end of next year, this program will deliver one minute cadence lightcurves for $\\simeq 2.5$ million objects as faint as $g \\simeq 21.5$, along with full colour information. Via detection of their eclipses, CHiCaS will finally, and unambiguously identify the predicted large population of period bouncers. The identification of the missing population will provide an observational support for the current models for the mechanisms of angular momentum loss in compact binaries, which also describe the evolution of all kind of binaries. \nCHiCaS will also offer a complete and unbiased view into the short term variability of thousands of binaries, eclipsing systems, pulsating stars and CVs in the period gap, which will allow to improve our knowledge of these objects and to carry out additional tests on CV evolution.","PeriodicalId":71342,"journal":{"name":"黄金时代","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the models of CV evolution\",\"authors\":\"A. Pala, A. Ederoclite, N. G. Fusillo, H. V. Ramió, R. Raddi, J. Abril, B. Gänsicke, A. Rebassa-Mansergas\",\"doi\":\"10.22323/1.315.0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Cataclysmic Variables (CVs) is crucial to test our understanding of binary evolution and its application to many astrophysical phenomena, such as short gamma-ray bursts, X-ray transients and, more important, Supernovae Ia, our yardsticks for measuring distances. Yet, the predicted major component of the present-day CV population, the so-called \\\"period bouncers\\\" (CVs containing a white dwarf and a degenerate donor), has not been detected, highlighting a major discrepancy between theory and observations. \\nWe present here CHiCaS, the Compact binary HIgh CAdence Survey, which will perform three hours of uninterrupted time series photometry over 136 square degrees of the sky with JAST/T80Cam. By the end of next year, this program will deliver one minute cadence lightcurves for $\\\\simeq 2.5$ million objects as faint as $g \\\\simeq 21.5$, along with full colour information. Via detection of their eclipses, CHiCaS will finally, and unambiguously identify the predicted large population of period bouncers. The identification of the missing population will provide an observational support for the current models for the mechanisms of angular momentum loss in compact binaries, which also describe the evolution of all kind of binaries. \\nCHiCaS will also offer a complete and unbiased view into the short term variability of thousands of binaries, eclipsing systems, pulsating stars and CVs in the period gap, which will allow to improve our knowledge of these objects and to carry out additional tests on CV evolution.\",\"PeriodicalId\":71342,\"journal\":{\"name\":\"黄金时代\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"黄金时代\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.22323/1.315.0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"黄金时代","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.22323/1.315.0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The study of Cataclysmic Variables (CVs) is crucial to test our understanding of binary evolution and its application to many astrophysical phenomena, such as short gamma-ray bursts, X-ray transients and, more important, Supernovae Ia, our yardsticks for measuring distances. Yet, the predicted major component of the present-day CV population, the so-called "period bouncers" (CVs containing a white dwarf and a degenerate donor), has not been detected, highlighting a major discrepancy between theory and observations.
We present here CHiCaS, the Compact binary HIgh CAdence Survey, which will perform three hours of uninterrupted time series photometry over 136 square degrees of the sky with JAST/T80Cam. By the end of next year, this program will deliver one minute cadence lightcurves for $\simeq 2.5$ million objects as faint as $g \simeq 21.5$, along with full colour information. Via detection of their eclipses, CHiCaS will finally, and unambiguously identify the predicted large population of period bouncers. The identification of the missing population will provide an observational support for the current models for the mechanisms of angular momentum loss in compact binaries, which also describe the evolution of all kind of binaries.
CHiCaS will also offer a complete and unbiased view into the short term variability of thousands of binaries, eclipsing systems, pulsating stars and CVs in the period gap, which will allow to improve our knowledge of these objects and to carry out additional tests on CV evolution.