{"title":"人工智能协同环境下的员工学习行为:基于工作需求-控制模型的视角","authors":"Aihui Chen, Tuo Yang, Jinfeng Ma, Yao-bin Lu","doi":"10.1108/imds-04-2022-0221","DOIUrl":null,"url":null,"abstract":"PurposeMost studies have focused on the impact of the application of AI on management attributes, management decisions and management ethics. However, how job demand and job control in the context of AI collaboration determine employees' learning process and learning behaviors, as well as how AI collaboration moderates employees' learning process and learning behaviors, remains unknown. To answer these questions, the authors adopted a Job Demand-Control (JDC) model to explore the influencing factors of employee's individual learning behavior.Design/methodology/approachThis study used questionnaire survey in organizations using AI to collect data. Partial least squares (PLS) predict algorithm and SPSS were used to test the hypotheses.FindingsJob demand and job control positively influence self-efficacy, self-efficacy positively influences learning goal orientation and learning goal orientation positively influences learning behavior. Learning goal orientation plays a mediating role between self-efficacy and learning behavior. Meanwhile, collaboration with AI positively moderates the impact of employees' job demand on self-efficacy and the impact of self-efficacy on learning behavior.Originality/valueThis study introduces self-efficacy as the outcome of JDC model, demonstrates the mediating role of learning goal orientation and introduces collaborative factors related to artificial intelligence. This study further enriches the theoretical system of human–AI interaction and expands the content of organizational learning theory.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"33 1","pages":"2169-2193"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Employees' learning behavior in the context of AI collaboration: a perspective on the job demand-control model\",\"authors\":\"Aihui Chen, Tuo Yang, Jinfeng Ma, Yao-bin Lu\",\"doi\":\"10.1108/imds-04-2022-0221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeMost studies have focused on the impact of the application of AI on management attributes, management decisions and management ethics. However, how job demand and job control in the context of AI collaboration determine employees' learning process and learning behaviors, as well as how AI collaboration moderates employees' learning process and learning behaviors, remains unknown. To answer these questions, the authors adopted a Job Demand-Control (JDC) model to explore the influencing factors of employee's individual learning behavior.Design/methodology/approachThis study used questionnaire survey in organizations using AI to collect data. Partial least squares (PLS) predict algorithm and SPSS were used to test the hypotheses.FindingsJob demand and job control positively influence self-efficacy, self-efficacy positively influences learning goal orientation and learning goal orientation positively influences learning behavior. Learning goal orientation plays a mediating role between self-efficacy and learning behavior. Meanwhile, collaboration with AI positively moderates the impact of employees' job demand on self-efficacy and the impact of self-efficacy on learning behavior.Originality/valueThis study introduces self-efficacy as the outcome of JDC model, demonstrates the mediating role of learning goal orientation and introduces collaborative factors related to artificial intelligence. This study further enriches the theoretical system of human–AI interaction and expands the content of organizational learning theory.\",\"PeriodicalId\":13427,\"journal\":{\"name\":\"Ind. Manag. Data Syst.\",\"volume\":\"33 1\",\"pages\":\"2169-2193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ind. Manag. Data Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-04-2022-0221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-04-2022-0221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Employees' learning behavior in the context of AI collaboration: a perspective on the job demand-control model
PurposeMost studies have focused on the impact of the application of AI on management attributes, management decisions and management ethics. However, how job demand and job control in the context of AI collaboration determine employees' learning process and learning behaviors, as well as how AI collaboration moderates employees' learning process and learning behaviors, remains unknown. To answer these questions, the authors adopted a Job Demand-Control (JDC) model to explore the influencing factors of employee's individual learning behavior.Design/methodology/approachThis study used questionnaire survey in organizations using AI to collect data. Partial least squares (PLS) predict algorithm and SPSS were used to test the hypotheses.FindingsJob demand and job control positively influence self-efficacy, self-efficacy positively influences learning goal orientation and learning goal orientation positively influences learning behavior. Learning goal orientation plays a mediating role between self-efficacy and learning behavior. Meanwhile, collaboration with AI positively moderates the impact of employees' job demand on self-efficacy and the impact of self-efficacy on learning behavior.Originality/valueThis study introduces self-efficacy as the outcome of JDC model, demonstrates the mediating role of learning goal orientation and introduces collaborative factors related to artificial intelligence. This study further enriches the theoretical system of human–AI interaction and expands the content of organizational learning theory.