面向分布式数据库系统的非2pc事务管理

Qian Lin, Pengfei Chang, Gang Chen, B. Ooi, K. Tan, Zhengkui Wang
{"title":"面向分布式数据库系统的非2pc事务管理","authors":"Qian Lin, Pengfei Chang, Gang Chen, B. Ooi, K. Tan, Zhengkui Wang","doi":"10.1145/2882903.2882923","DOIUrl":null,"url":null,"abstract":"Shared-nothing architecture has been widely used in distributed databases to achieve good scalability. While it offers superior performance for local transactions, the overhead of processing distributed transactions can degrade the system performance significantly. The key contributor to the degradation is the expensive two-phase commit (2PC) protocol used to ensure atomic commitment of distributed transactions. In this paper, we propose a transaction management scheme called LEAP to avoid the 2PC protocol within distributed transaction processing. Instead of processing a distributed transaction across multiple nodes, LEAP converts the distributed transaction into a local transaction. This benefits the processing locality and facilitates adaptive data repartitioning when there is a change in data access pattern. Based on LEAP, we develop an online transaction processing (OLTP) system, L-Store, and compare it with the state-of-the-art distributed in-memory OLTP system, H-Store, which relies on the 2PC protocol for distributed transaction processing, and H^L-Store, a H-Store that has been modified to make use of LEAP. Results of an extensive experimental evaluation show that our LEAP-based engines are superior over H-Store by a wide margin, especially for workloads that exhibit locality-based data accesses.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Towards a Non-2PC Transaction Management in Distributed Database Systems\",\"authors\":\"Qian Lin, Pengfei Chang, Gang Chen, B. Ooi, K. Tan, Zhengkui Wang\",\"doi\":\"10.1145/2882903.2882923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shared-nothing architecture has been widely used in distributed databases to achieve good scalability. While it offers superior performance for local transactions, the overhead of processing distributed transactions can degrade the system performance significantly. The key contributor to the degradation is the expensive two-phase commit (2PC) protocol used to ensure atomic commitment of distributed transactions. In this paper, we propose a transaction management scheme called LEAP to avoid the 2PC protocol within distributed transaction processing. Instead of processing a distributed transaction across multiple nodes, LEAP converts the distributed transaction into a local transaction. This benefits the processing locality and facilitates adaptive data repartitioning when there is a change in data access pattern. Based on LEAP, we develop an online transaction processing (OLTP) system, L-Store, and compare it with the state-of-the-art distributed in-memory OLTP system, H-Store, which relies on the 2PC protocol for distributed transaction processing, and H^L-Store, a H-Store that has been modified to make use of LEAP. Results of an extensive experimental evaluation show that our LEAP-based engines are superior over H-Store by a wide margin, especially for workloads that exhibit locality-based data accesses.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2882923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

无共享架构在分布式数据库中得到了广泛的应用,以获得良好的可扩展性。虽然它为本地事务提供了优越的性能,但处理分布式事务的开销可能会显著降低系统性能。导致性能下降的关键因素是昂贵的两阶段提交(2PC)协议,该协议用于确保分布式事务的原子提交。为了避免分布式事务处理中的2PC协议,本文提出了一种称为LEAP的事务管理方案。LEAP不是跨多个节点处理分布式事务,而是将分布式事务转换为本地事务。这有利于处理局部性,并便于在数据访问模式发生变化时进行自适应数据重分区。基于LEAP,我们开发了一个在线事务处理(OLTP)系统L-Store,并将其与最先进的分布式内存OLTP系统H- store和H^L-Store进行了比较。H- store依赖于2PC协议进行分布式事务处理,H^L-Store是一个经过修改以利用LEAP的H- store。广泛的实验评估结果表明,我们基于leap的引擎在很大程度上优于H-Store,特别是对于显示基于位置的数据访问的工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Non-2PC Transaction Management in Distributed Database Systems
Shared-nothing architecture has been widely used in distributed databases to achieve good scalability. While it offers superior performance for local transactions, the overhead of processing distributed transactions can degrade the system performance significantly. The key contributor to the degradation is the expensive two-phase commit (2PC) protocol used to ensure atomic commitment of distributed transactions. In this paper, we propose a transaction management scheme called LEAP to avoid the 2PC protocol within distributed transaction processing. Instead of processing a distributed transaction across multiple nodes, LEAP converts the distributed transaction into a local transaction. This benefits the processing locality and facilitates adaptive data repartitioning when there is a change in data access pattern. Based on LEAP, we develop an online transaction processing (OLTP) system, L-Store, and compare it with the state-of-the-art distributed in-memory OLTP system, H-Store, which relies on the 2PC protocol for distributed transaction processing, and H^L-Store, a H-Store that has been modified to make use of LEAP. Results of an extensive experimental evaluation show that our LEAP-based engines are superior over H-Store by a wide margin, especially for workloads that exhibit locality-based data accesses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1