下一代油田现场痕量化学物质的SERS分析

Zhengwei Liu, Sankaran Murugesan, S. Ramachandran, Peng Jin
{"title":"下一代油田现场痕量化学物质的SERS分析","authors":"Zhengwei Liu, Sankaran Murugesan, S. Ramachandran, Peng Jin","doi":"10.2118/204369-ms","DOIUrl":null,"url":null,"abstract":"\n Accurate and precise monitoring of chemical additives in oilfield brine is an important aspect of oil and gas operations towards corrosion control and flow assurance. Many operators are required to monitor the residual concentrations of chemical additives in production systems at specific locations to monitor and troubleshoot factors affecting chemical deliverability and performance. However, residual measurements are extremely problematic due to many factors, including the surface active nature of the chemicals and high ionic strength of the brine. The error on residual measurements can often be over 100%. Residual measurement typically requires the collection of a water sample, which often needs to be transported to a centralized analytical laboratory. Analytical techniques used to measure residuals are based on several combinations of separation (e.g. chromatography, liquid-liquid extraction, etc.) and detection (e.g. various forms of spectroscopy). However, most of these methods lack portability and require tedious laboratory procedures located off-site. The current paper describes a nanotechnology-enabled Raman spectroscopy method developed and tested for monitoring chemical inhibitor residuals. Development of this technology with handheld instrumentation provides better detection and quantification of chemical additives in the field and reduces time and cost compared to sending samples to off-site laboratories for data collection.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next Generation Oilfield on-Site Trace Chemicals Analysis by SERS\",\"authors\":\"Zhengwei Liu, Sankaran Murugesan, S. Ramachandran, Peng Jin\",\"doi\":\"10.2118/204369-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate and precise monitoring of chemical additives in oilfield brine is an important aspect of oil and gas operations towards corrosion control and flow assurance. Many operators are required to monitor the residual concentrations of chemical additives in production systems at specific locations to monitor and troubleshoot factors affecting chemical deliverability and performance. However, residual measurements are extremely problematic due to many factors, including the surface active nature of the chemicals and high ionic strength of the brine. The error on residual measurements can often be over 100%. Residual measurement typically requires the collection of a water sample, which often needs to be transported to a centralized analytical laboratory. Analytical techniques used to measure residuals are based on several combinations of separation (e.g. chromatography, liquid-liquid extraction, etc.) and detection (e.g. various forms of spectroscopy). However, most of these methods lack portability and require tedious laboratory procedures located off-site. The current paper describes a nanotechnology-enabled Raman spectroscopy method developed and tested for monitoring chemical inhibitor residuals. Development of this technology with handheld instrumentation provides better detection and quantification of chemical additives in the field and reduces time and cost compared to sending samples to off-site laboratories for data collection.\",\"PeriodicalId\":11099,\"journal\":{\"name\":\"Day 1 Mon, December 06, 2021\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, December 06, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204369-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, December 06, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204369-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确、精确地监测油田卤水中的化学添加剂是油气作业中控制腐蚀和保证流动的一个重要方面。许多作业者需要在特定地点监测生产系统中化学添加剂的残留浓度,以监测和排除影响化学品输送能力和性能的因素。然而,由于许多因素,包括化学物质的表面活性和盐水的高离子强度,残留测量是非常有问题的。残差测量的误差通常可以超过100%。残留测量通常需要收集水样,通常需要将水样运送到集中分析实验室。用于测量残留物的分析技术是基于几种分离(如色谱法、液-液萃取等)和检测(如各种形式的光谱学)的组合。然而,这些方法大多缺乏可移植性,并且需要繁琐的实验室程序。本文描述了一种纳米技术支持的拉曼光谱方法,该方法开发并测试了用于监测化学抑制剂残留的方法。该技术与手持式仪器的开发提供了更好的现场化学添加剂检测和定量,与将样品送到现场实验室进行数据收集相比,减少了时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Next Generation Oilfield on-Site Trace Chemicals Analysis by SERS
Accurate and precise monitoring of chemical additives in oilfield brine is an important aspect of oil and gas operations towards corrosion control and flow assurance. Many operators are required to monitor the residual concentrations of chemical additives in production systems at specific locations to monitor and troubleshoot factors affecting chemical deliverability and performance. However, residual measurements are extremely problematic due to many factors, including the surface active nature of the chemicals and high ionic strength of the brine. The error on residual measurements can often be over 100%. Residual measurement typically requires the collection of a water sample, which often needs to be transported to a centralized analytical laboratory. Analytical techniques used to measure residuals are based on several combinations of separation (e.g. chromatography, liquid-liquid extraction, etc.) and detection (e.g. various forms of spectroscopy). However, most of these methods lack portability and require tedious laboratory procedures located off-site. The current paper describes a nanotechnology-enabled Raman spectroscopy method developed and tested for monitoring chemical inhibitor residuals. Development of this technology with handheld instrumentation provides better detection and quantification of chemical additives in the field and reduces time and cost compared to sending samples to off-site laboratories for data collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemical Flooding in Western Canada – Successes and Operational Challenges A Novel Epoxy Resin Composition as a Lost Circulation Material: Formulation, Lab Testing and Field Execution Mechanistic Understanding of the Impact of EOR Polymer on the Inhibition Mechanism and Performance of Phosphonate Scale Inhibitors Flow Dynamics of Microemulsion-Forming Surfactants and its Implications for Enhanced Oil Recovery: A Microfluidic Study Scale Control for Long Term Well and Facility Preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1