{"title":"何时说什么和如何说:调整口语对话系统的精细化和间接性","authors":"Juliana Miehle, W. Minker, Stefan Ultes","doi":"10.5210/dad.2022.101","DOIUrl":null,"url":null,"abstract":"With the aim of designing a spoken dialogue system which has the ability to adapt to the user's communication idiosyncrasies, we investigate whether it is possible to carry over insights from the usage of communication styles in human-human interaction to human-computer interaction. In an extensive literature review, it is demonstrated that communication styles play an important role in human communication. Using a multi-lingual data set, we show that there is a significant correlation between the communication style of the system and the preceding communication style of the user. This is why two components that extend the standard architecture of spoken dialogue systems are presented: 1) a communication style classifier that automatically identifies the user communication style and 2) a communication style selection module that selects an appropriate system communication style. We consider the communication styles elaborateness and indirectness as it has been shown that they influence the user's satisfaction and the user's perception of a dialogue. We present a neural classification approach based on supervised learning for each task. Neural networks are trained and evaluated with features that can be automatically derived during an ongoing interaction in every spoken dialogue system. It is shown that both components yield solid results and outperform the baseline in form of a majority-class classifier.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"13 1","pages":"1-40"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"When to Say What and How: Adapting the Elaborateness and Indirectness of Spoken Dialogue Systems\",\"authors\":\"Juliana Miehle, W. Minker, Stefan Ultes\",\"doi\":\"10.5210/dad.2022.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the aim of designing a spoken dialogue system which has the ability to adapt to the user's communication idiosyncrasies, we investigate whether it is possible to carry over insights from the usage of communication styles in human-human interaction to human-computer interaction. In an extensive literature review, it is demonstrated that communication styles play an important role in human communication. Using a multi-lingual data set, we show that there is a significant correlation between the communication style of the system and the preceding communication style of the user. This is why two components that extend the standard architecture of spoken dialogue systems are presented: 1) a communication style classifier that automatically identifies the user communication style and 2) a communication style selection module that selects an appropriate system communication style. We consider the communication styles elaborateness and indirectness as it has been shown that they influence the user's satisfaction and the user's perception of a dialogue. We present a neural classification approach based on supervised learning for each task. Neural networks are trained and evaluated with features that can be automatically derived during an ongoing interaction in every spoken dialogue system. It is shown that both components yield solid results and outperform the baseline in form of a majority-class classifier.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"13 1\",\"pages\":\"1-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5210/dad.2022.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/dad.2022.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
When to Say What and How: Adapting the Elaborateness and Indirectness of Spoken Dialogue Systems
With the aim of designing a spoken dialogue system which has the ability to adapt to the user's communication idiosyncrasies, we investigate whether it is possible to carry over insights from the usage of communication styles in human-human interaction to human-computer interaction. In an extensive literature review, it is demonstrated that communication styles play an important role in human communication. Using a multi-lingual data set, we show that there is a significant correlation between the communication style of the system and the preceding communication style of the user. This is why two components that extend the standard architecture of spoken dialogue systems are presented: 1) a communication style classifier that automatically identifies the user communication style and 2) a communication style selection module that selects an appropriate system communication style. We consider the communication styles elaborateness and indirectness as it has been shown that they influence the user's satisfaction and the user's perception of a dialogue. We present a neural classification approach based on supervised learning for each task. Neural networks are trained and evaluated with features that can be automatically derived during an ongoing interaction in every spoken dialogue system. It is shown that both components yield solid results and outperform the baseline in form of a majority-class classifier.
期刊介绍:
D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.